

Workshop on "Developing Albania's <u>Hydroelectric Potential",</u> Tirana, June 3, 2016

IMPLEMENTING Rrapun 3&4 HPP

Dr Ioannis LEFAS
Chief Technical Officer
Infrastructure Projects
AKTOR S.A.

Expertise in HPPs / Dams

~ 200 mi €

~ 80 mi€

~ 120 mi €

~ 80 mi€

20 mi €

MAJOR PROJECTS

Thisavros HPP & Earth Dam
 Smokovo Dam & Leontari Tunnel
 Platanovrissi HPP & RCC Dam
 Mujib and Wala RCC Dams
 River Nestos, North Greece
 Jordan

Mesochora HPP & Earth/Concrete Dam
 Ilarion HPP & Rockfill Dam
 Central Greece
 North Greece
 ~ 75 mi €
 ~ 115 mi €

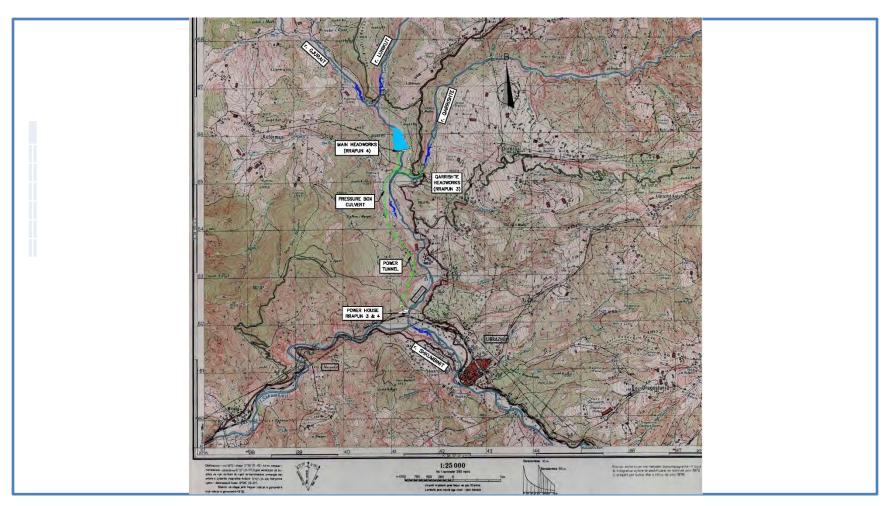
• Evinos Aquaduct Central Greece ~ 220 mi €

Crete island, Greece ~ 105 mi €

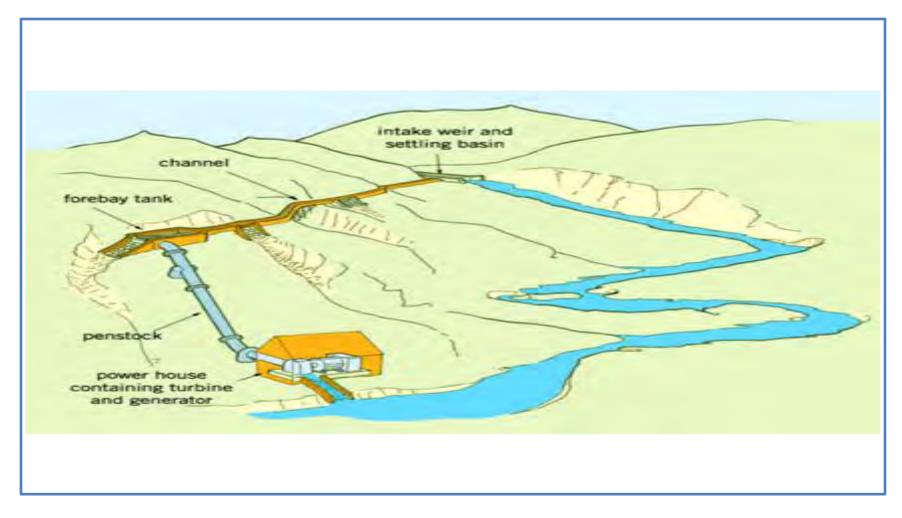
MEDIUM / SMALL PROJECTS

· Metsovitikos HPP Supplem. Works

• Aposelemi Earth Dam & Water Supply


Papadia Earth Dam	North Greece	~ 35 mi €
Pramoritsa Earth Dam	North Greece	~ 21 mi €
 Setta-Mananikia Screening Dam 	Evia island, Greece	~ 7 mi €
Kannaviou Rockfill Dam	Cyprus	~ 35 mi €
 Gadoura Earth/Rockfill Dam 	Rhodes island, Greece	~ 47 mi€
Gratini Earth/Rockfill Dam	North Greece	~ 30 mi €
Kritinia Dam	Rhodes island, Greece	~ 6 mi €
Smixiotiko SHPP	North Greece	~ 10 mi €
Rrapun SHPP	Librazhd, Albania	~ 24 mi €

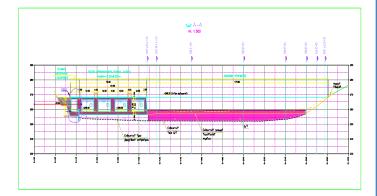
North Greece

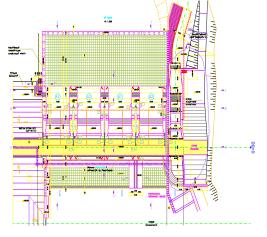


Fact Sheet	
VALUE	
Contract Value at Tender (excl. VAT)	14,500,000€
Contract Value at Completion (excl. VAT)	24,000,000€
TIMELINE	
Commencement Date	Aug. 2013
Expected Project Inauguration Date	mid July 2016

Technical Characteristics

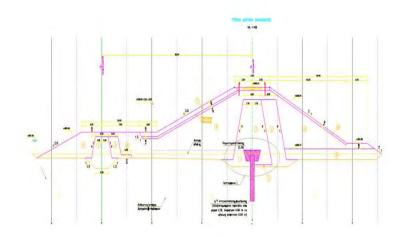
 Design Discharge : (17+10=) 27 m³/s from two water intakes (Rrapunit, Qarrishte)


Installed Capacity: 9,99 MW

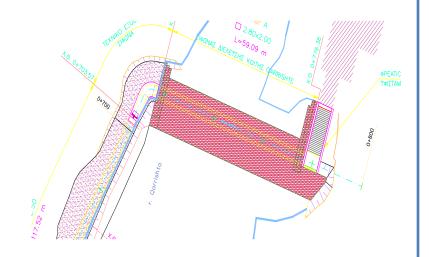

Average Production: 43,83 GWh/year

Scope of Works

- 1. Rrapunit Water Intake: 17m³/s
 - Dam construction consisting of:
 - Three 12mx8m Radial Gates plus
 One 12mx8m Radial Gate with an 8mx2m flap (Overall length 65m height 10m).
 - Earth Dam 177m long, 8.70m high above river bed with a 2.50m high foundation.
 - The dam creates a basin 250m wide by 400m long (water intake area ~105.000m², water volume ~400.000m³).
 - Outflow from the dam through a lateral 16.30m spillway through a debris rack and into a concrete pipe.

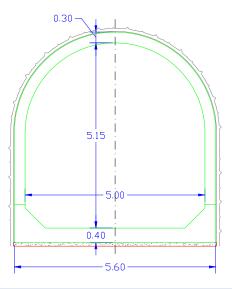


Earth Dam


- Core from clay material.
- Next to the clay material there are two types of filter.
- A number of protection layers from selected aggregate of variable sieve grading covers the dam.
- At the crest a 7m wide road runs along the axis and is connected to a 7m wide bridge over the radial gates.
- A diaphragm wall of interlocking cement bentonite piles, Φ800mm/600mm, runs along the dam in order to prevent leakage of water downstream.
- Construction of a cofferdam which will be part of the dam.

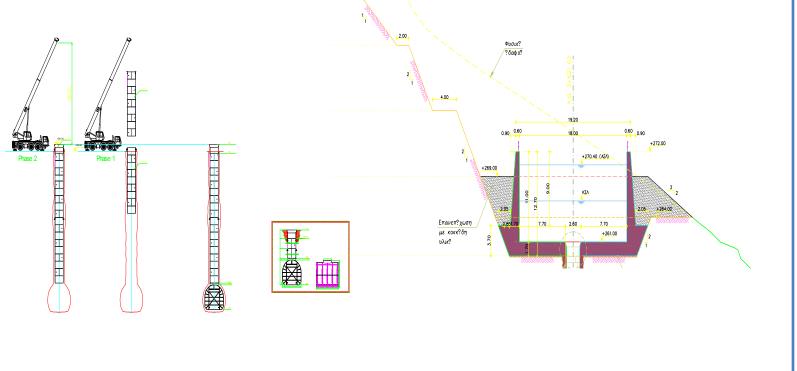
2. Qarrishte Water Intake: 10m³/s

- A shaft receives the outflow from HPP RRAPUN 2 and leads them to a concrete pipe through a siphon under the river bed of Qarrishte.
- A concrete dam with two 12mx6m radial gates, one of which with an 8mx1.60m flap gate for the reception of the flow in Qarrishte. The outflow goes through an 8m lateral spillway to a debris rack and into a concrete pipe.


3. Flow from Intakes to the Plant

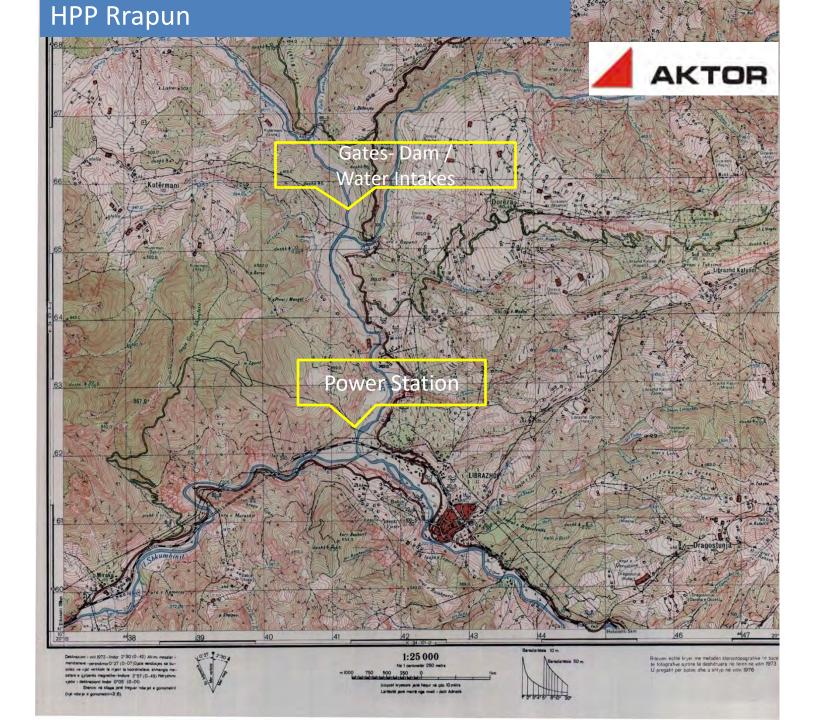
- A single concrete box culvert 3.30mx2.50 m carries the water from Rrapun intake for 400m.
- A single concrete box culvert with a 2.00mx2.50m and 2.00mx3.00m under free flow conditions leads the water from Qarrishte intake to a charging shaft and then to another single pipe with a 2.80x2.00 m under pressure, total length 780m.
- A T junction takes the water from the two branches into a twin concrete box culvert 2x2.80mx2.50m for 1.0km.
- Then the water enters into a 2.3km tunnel.
- At the end of the tunnel an 87m long, D 2800/15mm steel pipe receives the flow and leads it to the plant.
- Outside the power station the flow is divided into 3 parts, each part leading to a Francis turbine. Each pipe has an 1800mm diameter.

4. Tunnel


- Cross section 5.0mx5.15m forming an arc at the top, total length 2.3km.
- Construction method : NATM
- Construction of adit, total length 85m.

5. Surge Shaft/Tank

- An 18m in diameter, 11m high circular tank.
- A steel pipe Φ1800mm, 30m long from the bottom of the tank to the top of the tunnel.



6. Power Plant

- The power station will have an area of approximately 900m² and a height of 13m for the 600m² and 4.40m for the 300m².
- A crane with a 30th lifting capacity and an 11.00m span will serve for the installation and maintenance.
- 3 Francis turbines with maximum output 3.3 MW per each
- 3 generators with power output 3.780KVA-6.3KV-429rpm per each
- 3 main inlet valves DN1800/PN6bar
- 3 Hydraulic Power Units
- Step-up power transformer with output 12 MVA
- Outer high voltage(110 KV) substation
- Medium voltage(6.3KV-16KA/1sec), low voltage and automation panels

At the start (July 2013)



• In the end (April 2016)

• Rrapun Slideshow

SHPP SMIXIOTIKO S.A.

SHPP SMIXIOTIKO 4,95 MW

Project Identity

Site : Smixiotiko stream,

Grevena, Greece.

License holder : "SHPP SMIXIOTIKO S.A."

(ELLAKTOR Group & PPC)

Technology : Small hydro

■ Licensed capacity : 4,95 MW

■ Rated flow rate : 3,8 m³/s

■ Gross head : 155 mWG

■ Units : 1x2,6 m³/s Francis, horizontal

1x1,2 m³/s Pelton 4j, vertical

■ Energy yield : 12 GWh/yr

■ CAPEX : 8,8 m€

Commercial oper. : 03/2013

Location - Licenses

Site : Sixiotiko stream, approx. 30 km W of Grevena Municipality of Grevena, Region of W. Macedonia.

<u>Licenses</u>

Production License : 12/2001
 Environmental License : 05/2012
 Operation License : 03/2013

LINIT 2

Key technical data

SITE
Catchment area : 62 km²
Design flood (T=50 yrs) : 123,6 m³/s
Elevation : +958 m

INTAKE

Type : gated, side spilway

Rated flow rate $: 3.8 \text{ m}^3/\text{s}$ Ecological flow rate : 112 l/s

Main gate : radial, 7,0 x 5,0 m, hydraulic
Service gate : radial, 1,5 x 2,0 m, hydraulic
Safety gates : flat, twin 1,5 x 1,5 m, hydraulic

Settler : twin, parallel concrete tanks, l= 23 m long

3% longitudinal slope

design sand capture mean diameter d = 0,35 mm

electric flushing gates (2)

WATER WAY

Culvert (concrete) : l= 53 m (1,60 x 1,60 m), slope 0,3%

open channel flow,

Penstock forebay: 7 m long concrete tank

steel rack, 20 mm free bar spacing

hydraulic, automatic trash rack cleaner

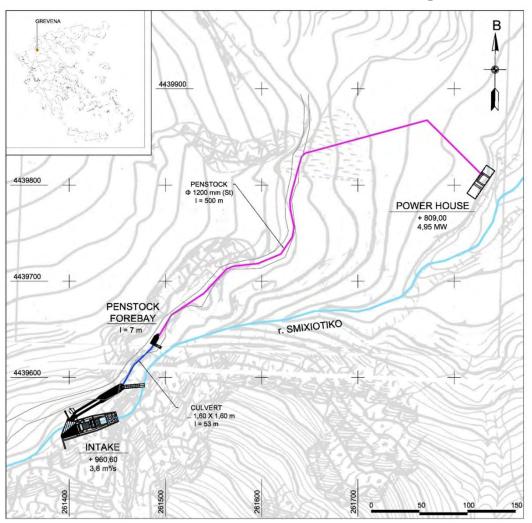
Penstock : I = 500 m, DN 1200x12 mm,

steel (mat. no. 1.0254), spiral seam outer protection PE coat (DIN 30670S-v)

inner protection epoxy resin min. DFT 400 μm

Quality control : 100% X-ray (on site welds) & pressure tested

POWER HOUSE


 $\begin{array}{lll} \text{Area} & : 373 \text{ m}^2 \\ \text{Height} & : 8,3 \text{ m} \\ \text{Elevation} & : +809 \text{ m} \end{array}$

	UNII 1	UNII 2	
TURBINE	Francis	Pelton	
	horizontal	4j vertical	
Rated flow (m ³ /s)	2,6	1,2	
Rated head (mWG)	150,6	150,9	
Speed (rpm)	1.000	600	
Rated power (kW)	3.485	1.590	
Manufacturer	Kossler GmbH (Austria)		
GENERATOR	synchronous		
	3ph AC, 50 Hz		
Capacity (kVA)	4.000	1.745	
power factor	0,9	0,9	
Voltage (kV)	6,3	0,66	
Cooling	IC21	IC21	
Code	IEC 31	IEC 31	
Manufacturer	AvK (Germany)	AEM (Germany)	
<u>TRAFO</u>			
Capacity (kVA)	4.000	2.000	
Voltage (kV)	6,3/20	0,66/20	
tap changer	+/-2x2,5%	+/-2x2,5%	
uk	>= 6%	>= 6%	
Cooling	ONAN	ONAN	
Manufacturer	Sier	Siemens	
SWITCHGEAR			
Туре	type tested (TTA)		
M.V. switchboard	SIMOSEC		
Breakers	Vacuum/3AH6/Siemens/630A/16kA(1s)		
L.V. switchboard	SIVACON		
PLC	SIMATIC		
SCADA	fully auto & remote control		
Communication	VDSL (OTE)		
Control principle	const. upstream water level		

LINIT 1

General arrangement

Thank you for your attention