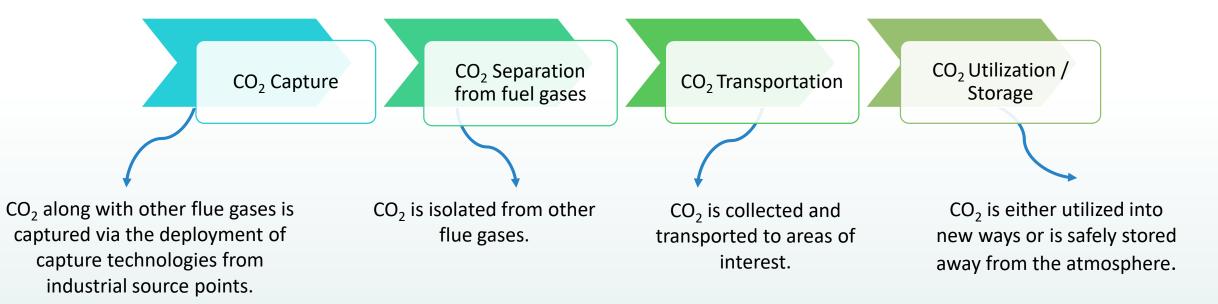


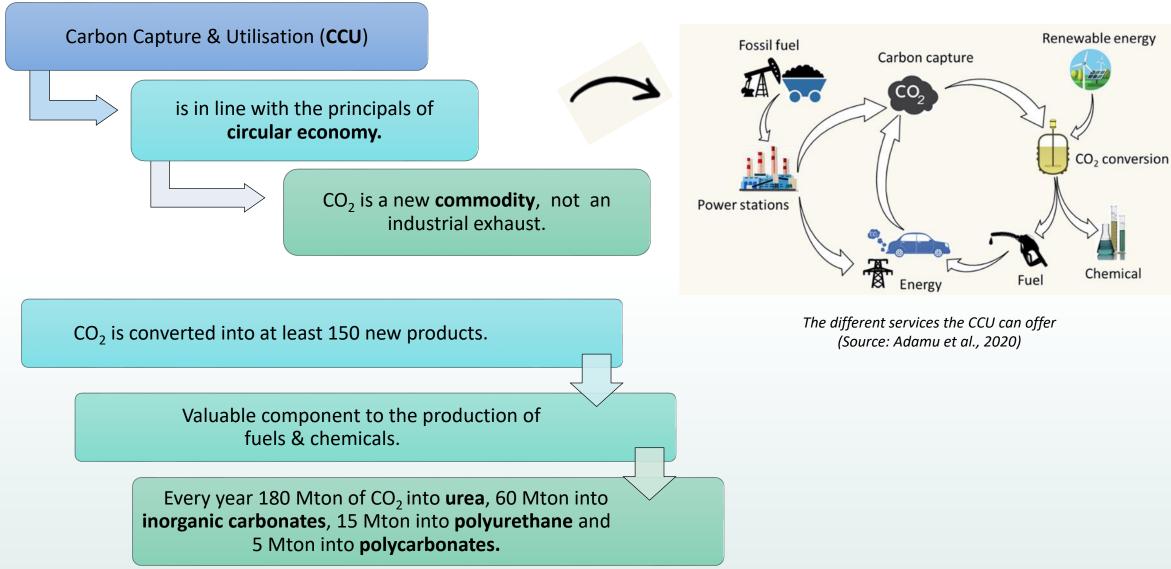
Achieving a Carbon-Neutral Europe: CCUS & Hydrogen

Dr. Nikolaos Koukouzas

Director of Research Centre for Research & Technology Hellas (CERTH), Visiting Research Fellow (IENE)

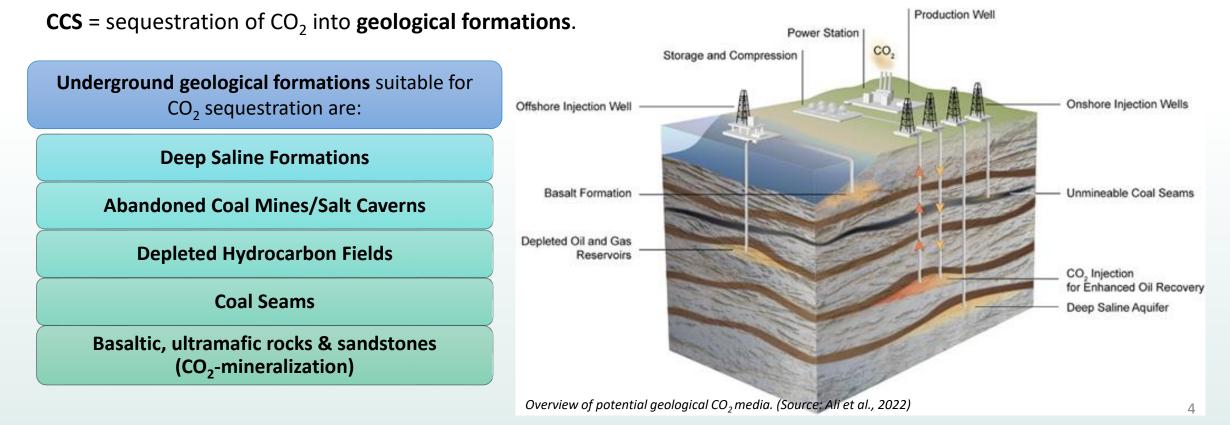

Athens, Technical Chamber of Greece (TEE-TCG)

2024


Carbon capture, utilization and storage (**CCUS**) ⇒ a suite of technologies that can play a diverse role in meeting global energy & climate goals.

CCUS ⇒ valuable tool for the decarbonisation of the industrial sector.

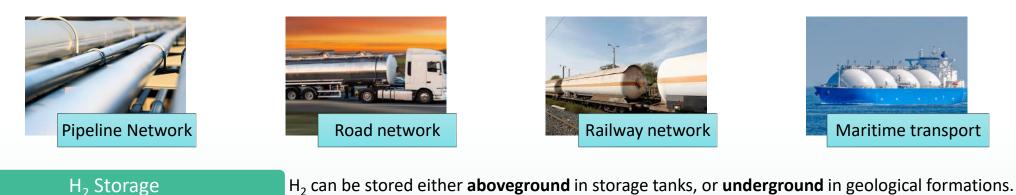
CCUS captures CO₂ from large point sources (power generation / industrial). If not being used on-site, CO₂ is compressed, transported & **injected into geological formations for CO₂ storage**.


CCUS value chain: CO₂ Utilisation

CCUS value chain: CO₂ Geological Storage

- 1. Storage above-ground: \Rightarrow in tanks
- 2. Underground storage: \Rightarrow in geological formations (permanent/long-term storage) \Rightarrow using CO₂ for EOR (Enhanced Oil Recovery)
- 3. Alternative CCS solution: ocean CO₂ storage or Bioenergy production with CCS (BECCS).

CO₂ reservoir prerequisites: (1) permeability, (2) thickness, (3) depth, (4) the occurrence of an overlying cap-rock.



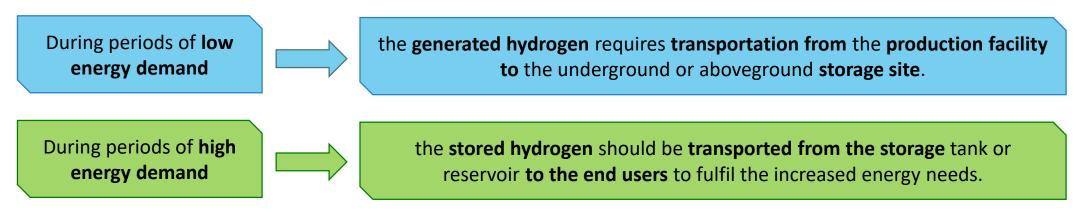
Hydrogen Value Chain (2)

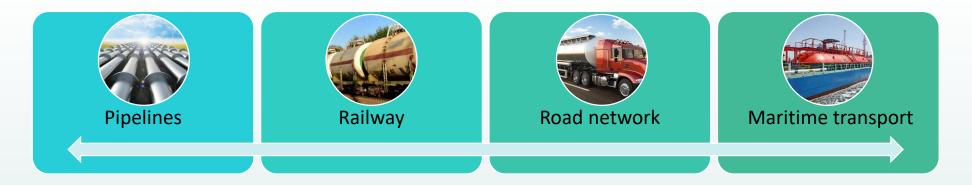
H₂ Production The H₂ production methods are codified by color.

- **Black/Grey H₂**: Generated via hydrocarbons. High CO₂ emissions.
- **Blue H₂**: Generated using hydrocarbons, combining CCUS.
- **Green H**₂: Produced by water electrolysis, using RES. Zero CO₂ emissions.
- Purple H₂: Produced by water electrolysis, using nuclear power.
- Turquoise H₂: Generated by fossil fuel pyrolysis.
- \circ White \mathbb{H}_2 : Naturally occurring in underground geological formations.

H₂ Transmission and Distribution The transportation of H₂ can be accomplished via various transport routes.

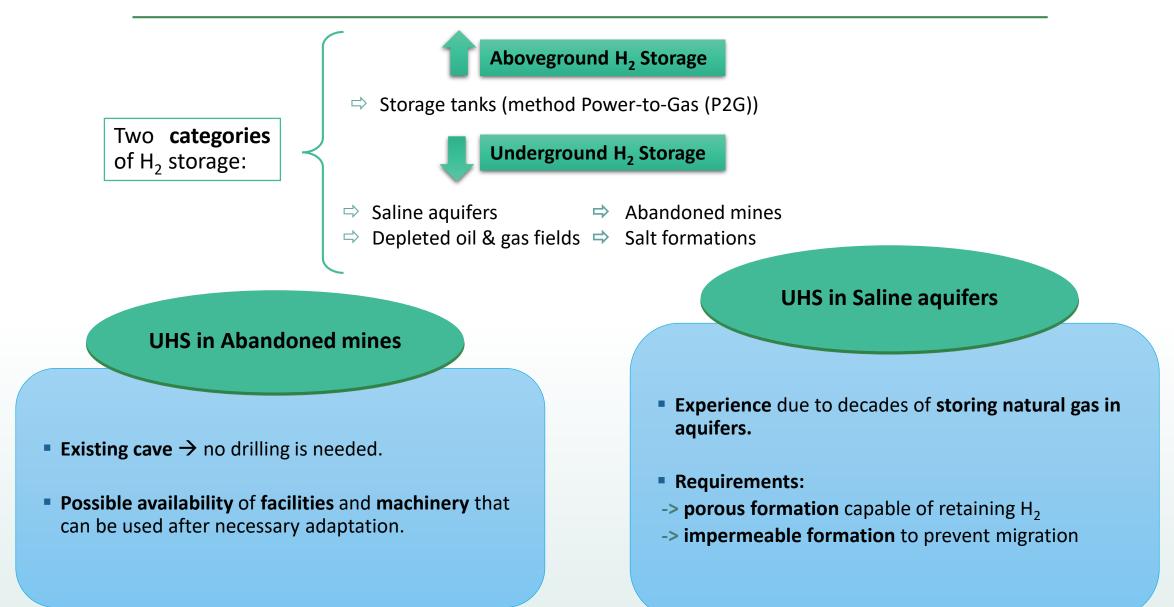
Geological settings optimal for H₂ storage are:


H₂ Utilisation


The already generated and stored H_2 can be utilised to cover the energy needs.

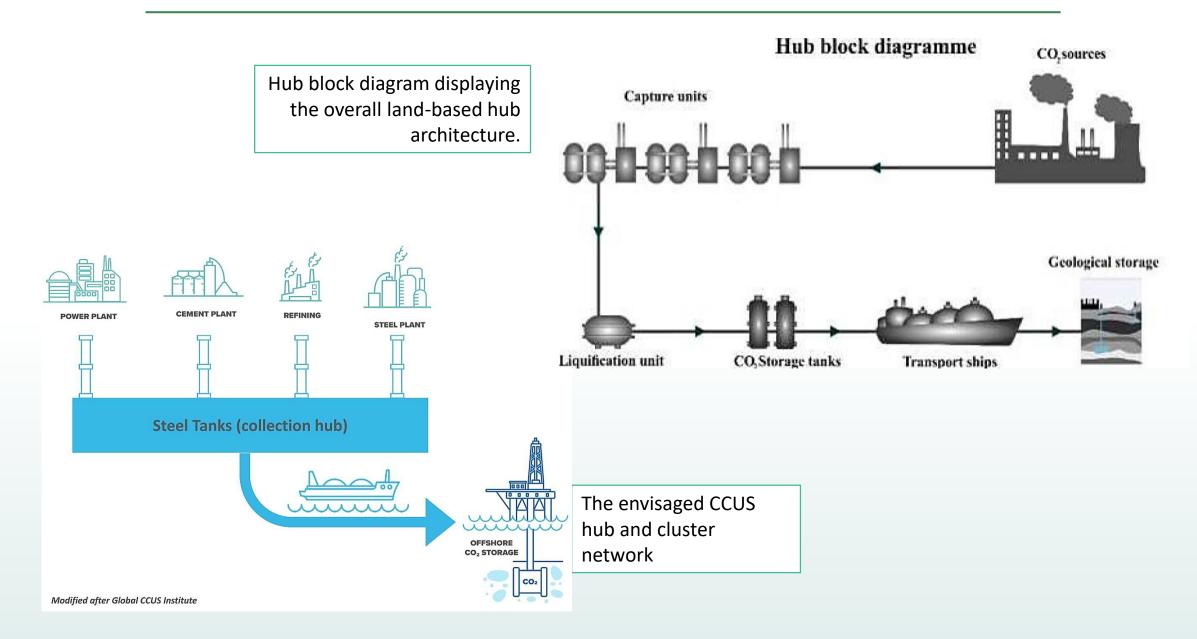
- H₂ is withdrawn from the storage site and properly processed to obtain a form that is suitable for use by consumers.
- H₂ can be utilised to fuel vehicle, generate electricity or heat.

H₂ value chain: Hydrogen Transportation


✓ In the hydrogen value chain, **transportation** is identified **at two key points**:

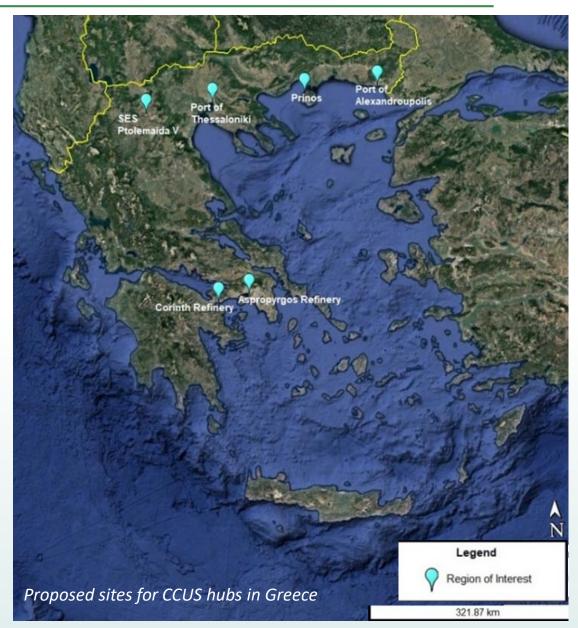
A combination of the available transportation methods can be used

H₂ value chain: Hydrogen Storage


UHS in Salt formations

- Large capacity and capable pressure conditions.
- Relatively inexpensive excavation.
- Higher rates of hydrogen storage and extraction → flexibility to supply energy to the grid when required.

UHS in Depleted oil & gas fields


- **Optimum conditions** for gas storage.
- Years of experience, advanced technological resources, existing facilities.
- Availability of a residual gas quantity, which can be used as cushion gas.

CCUS & H₂ hub networks

Proposed CCUS hubs in Greece

- Proposed sites for **CCUS hubs** in Greece:
 - Thessaloniki port → nearby <u>CO₂ emission</u> <u>centers</u>: (a) Western Macedonia industrial region, (b) Thessaloniki cement & oil industries. <u>CO₂ transfer</u> via ships in Greece/abroad.
 - **2) Prinos** \rightarrow promising <u>storage</u> sites.
 - 3) Alexandroupolis port → connects several local industries for CCU. <u>Advantage</u>: geopolitical significance (supply hub for NATO Alliance's defense).
 - 4) Ptolemaida → nearby <u>CO₂ emission sources</u> (coal power plants) & potential storage sites (Mesohellenic Trough). <u>CO₂ transfer via</u> pipelines/railway.
 - 5) Corinth & Aspropyrgos → major CO₂ sources (oil refineries). CO₂ transfer via ships in Greece/abroad.

CO_2 Capture in Greece (1)

- CO₂ captured → CO₂ separated from other fuel gases via: (a) pre-combustion, (b) postcombustion, (c) oxy-fuel combustion.
- Major emission sources:
 - a. <u>Sector of energy & industrial sector</u>: stationary sources, i.e., power plants & factories.
 - **Sector of energy**: fossil fuel-powered power plants & refineries.
 - c. <u>Industrial sector</u>: iron industry, steel industry & cement industry.
- Potential CO₂ capture sources in Greece:
- 1. Ptolemaida V power plant.
- 2. Cement industries (e.g., TITAN Cement)
- 3. Oil & gas refineries (e.g., Motor Oil,

Energean)

Ptolemaida V plant (source: https://energypress.gr)

- Ptolemaida V: a CO₂ capture-ready facility, will contribute to the security of national energy supply.
- Started operating in 2022 → will convert to another fuel / technology by 2028.
- Potential storage: Prinos basin, Middle East & North Africa for EOR (Red Sea, Egypt), Northern Europe (offshore storage).

CO₂ & H₂ Transportation in Greece – Available Infrastructure (1)

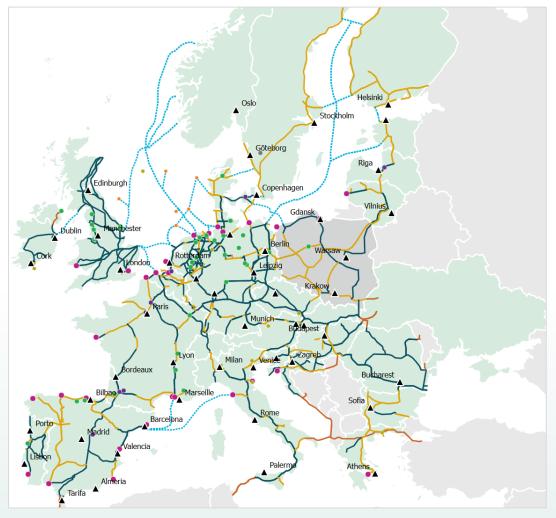
Ports (e.g., Piraeus port, Thessaloniki port) → space for industrial & commercial activity → can support numerous ships & boats (passengers / cargo) → CCUS hubs

Greek railway network:

Western Macedonia (standard gauge line)	 Polykastro – Idomeni variant (new layout) Kommanos – Kozani (Public Power Corporation)
Peloponnese (standard gauge line)	 Rododafni – Rio, Isthmus – Loutraki Isthmus – Ag. Theodoroi (connection with Motor Oil facilities)

> Larger volumes of $CO_2 \otimes H_2$ and longer distances than trucks.

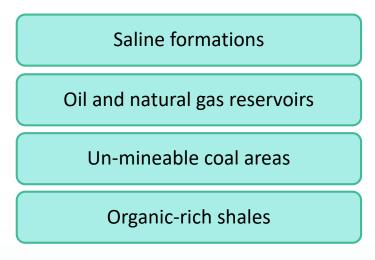
Transportation tanks: materials compatible with CO₂ and H₂ properties to prevent any leakage due to corrosion.

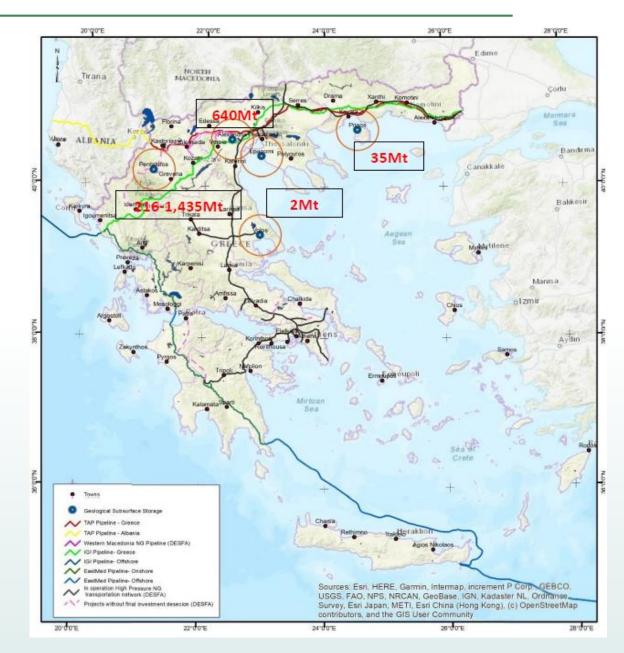

Existing railway network of continental Greece (Source: <u>www.ose.qr</u>)

CO₂ & H₂ Transportation in Greece – Available Infrastructure (2)

CO₂ & H₂ transportation infrastructure → pipeline networks

- ► CO₂ and H₂ transport by retrofitting existing gas pipes:
- **I.** Existing NG pipeline network \rightarrow can be adapted to transport CO₂ and H₂ \rightarrow Reduces the costs of constructing a new transport network.
- II. The adaptation of the existing network for natural gas is required due to the different properties of CO₂ and H₂ gases compared to natural gas, which may cause corrosion of the existing pipes.

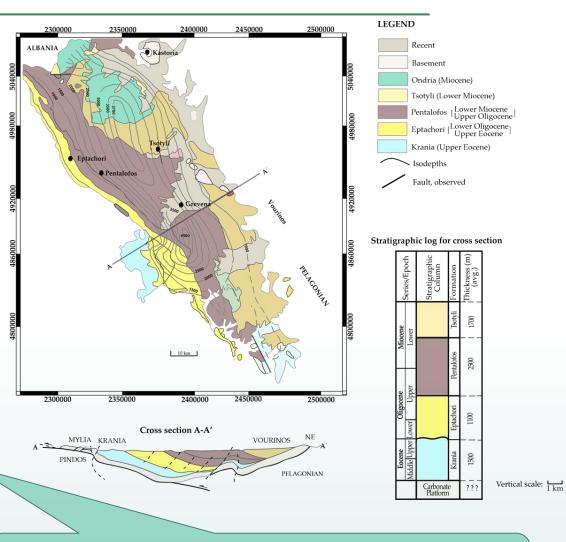

CO₂ & H₂ transportation infrastructure → **shipping** via Greek ports


Projected expansion of the European H2 pipeline network by 2040 (Source: <u>EHB</u>)

CO₂ Storage sites in Greece (1)

 Preferable types of CO₂ geological storage formations in Greece:

- Potential CO₂ geological storage sites in Greece with estimated storage capacity in Mt:
 - 1. Mesohellenic Trough (216-1,435 Mt)
 - 2. West Thessaloniki Epanomi field (640 Mt)
 - 3. Prinos South Kavala (35 Mt)
 - 4. Volos basalts (2 Mt) not preferrable


CO_2 Storage sites in Greece (2)

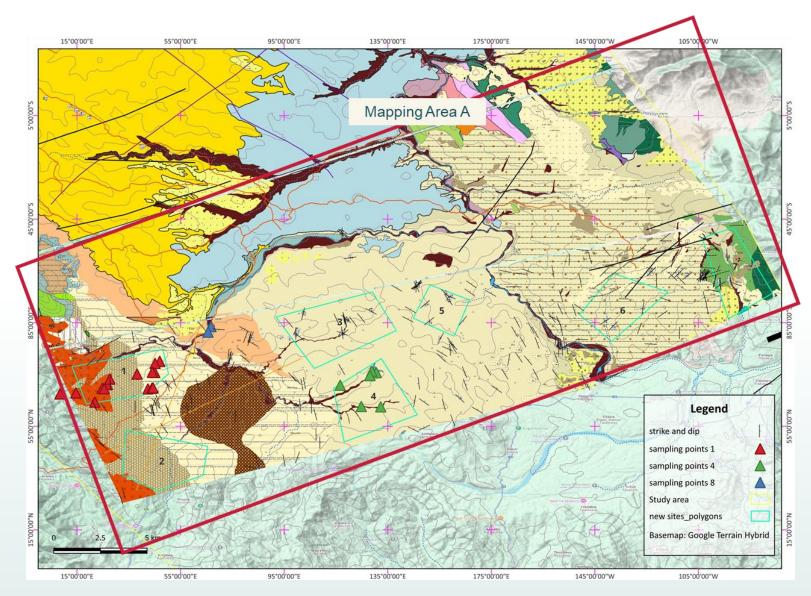
1. Mesohellenic trough sandsones

Acceptability criteria	Mesohellenic Trough
Storage Capacity (Mt)	216 – 1435 (Pentalofos + Eptachori formation)
Injectivity	Good (15% porosity)
Integrity	2 confining zones at depth
Depth (m)	2500

2. West Thessaloniki – Epanomi field

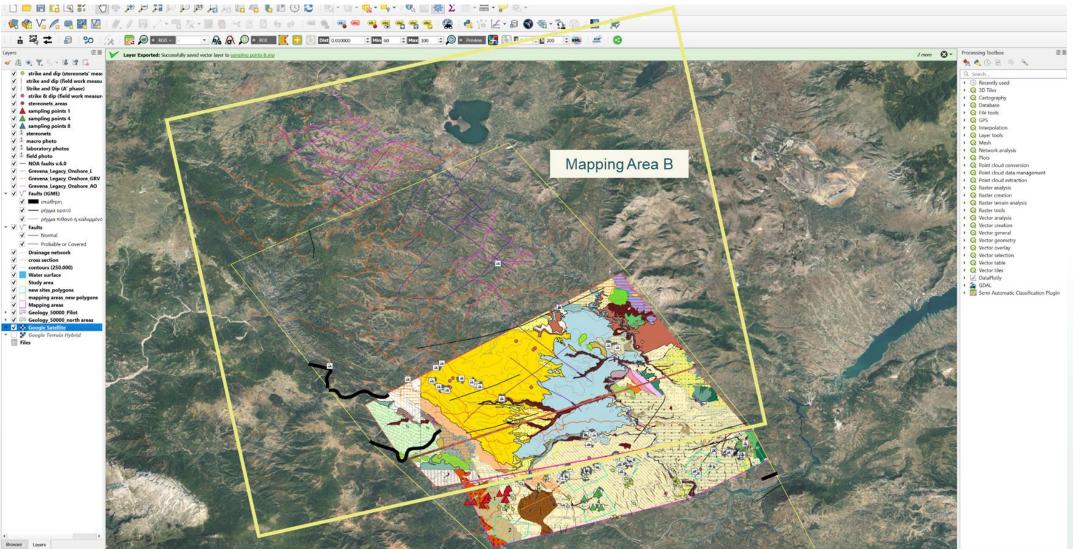
Acceptability criteria	West Thessaloniki	Epanomi Field	
Storage Capacity (Mt)	640	2	
Injectivity	Low porosity & permeability	Low porosity to tight	
Integrity	1200	1600	
Depth (m)	900 - 2400	2600	

Estimated NG reserves in the **Epanomi field** ~ 500 million m³ of:

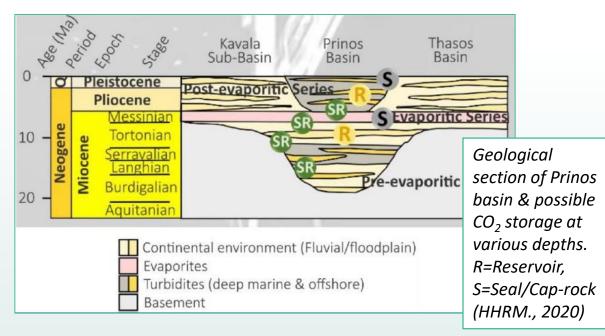

- 71.8% hydrocarbon gases
- 26.6% non-hydrocarbon gases (including 22.6% CO₂)

CO₂ Storage sites in Greece (3)

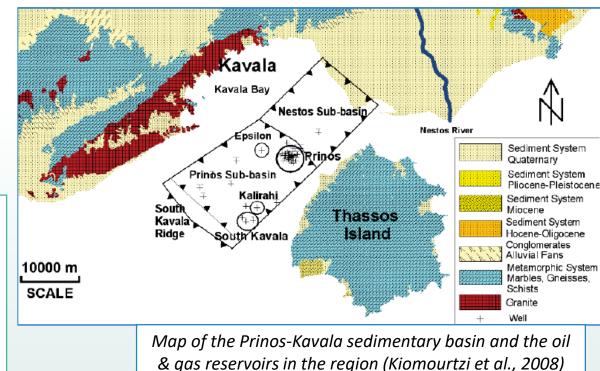
→ The region is studied within the EU-funded project
 → PilotSTRATEGY → CERTH is one of the participants


- Data collected & organized in Geopackages for QGIS analysis:
 - Strike & dip measurements
 - Sampling points
 - Seismic Data
 - Visual material (sample photos, graphs, etc.)

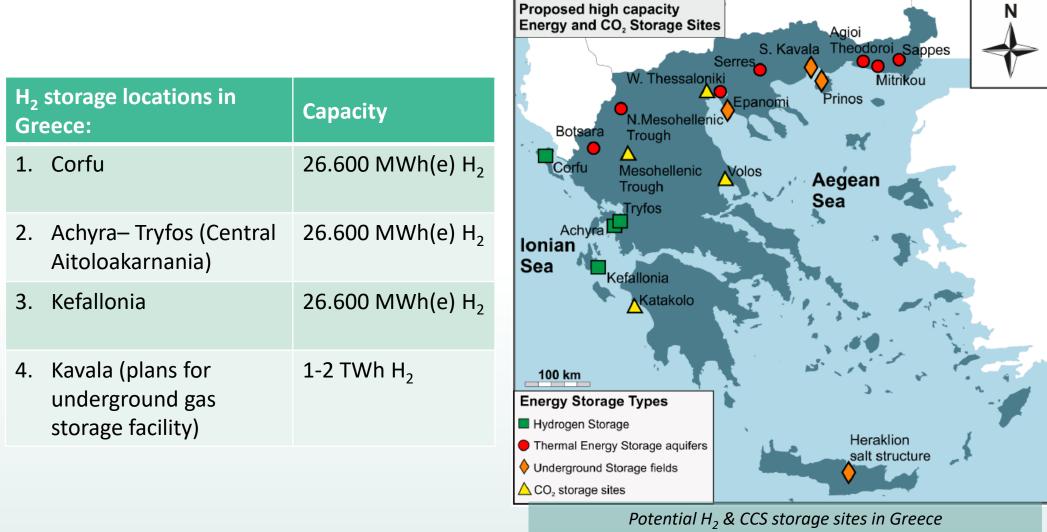
Mapping Area A: 90 % complete



Mesohellenic trough Mapping Area B: Currently mapping to cover the total area of Seismic data.


3. Prinos basin – South Kavala

Acceptability criteria	South Kavala	Prinos Basin
Storage Capacity (Mt)	35	
Injectivity	Average to Goo	d (15% porosity)
Integrity	2500 - 2850	1600 - 1730
Depth (m)	1600	1600



4. Volos basalts

Geological Formations	Storage Capacity (tn)
Basalts	43,200

H₂ Storage sites in Greece

(Source: Arvanitis, Koukouzas, et al., 2020)

Characteristic Examples of CCUS & CCS projects in Greece

Project Title	Start-End	Description	
UCG & CO ₂ STORAGE - Study of deep underground coal gasification & permanent CO ₂ storage in affected areas	01/07/10- 31/12/12	Evaluating the potential of deep coal seams for UCG & CO ₂ storage via using the same boreholes after technical modifications. Study of technical, environmental, economic factors. Study areas: Dobrudzha Coal Deposit (Bulgaria), Florina Basin (Greece), El Tremedal (Spain).	
RISCS - Research into Impacts and Safety in CO ₂ Storage	01/01/10- 31/12/13	Assessing environmental impacts of CO ₂ leakage from geological storage sites on groundwater resources, onshore & offshore near-surface ecosystems. Informed policy makers, politicians & general public of the feasibility, long-term benefits & consequences of large-scale CCS.	
R&Dialogue - Research and Civil Society Dialogue towards a low- carbon society	01/06/12- 30/11/15	Promotion of collaboration between R&D organizations (RDOs) & civil society organizations (CSOs) for a shared vision on the development of renewable energies and CCS, to develop dialogue and joint learning.	R <mark>&</mark> Dialogue
ECCSEL - European Carbon Dioxide Capture and Storage Laboratory Infrastructure	01/09/15- 31/08/17	Aim & Outcome: to make accessible ECCSEL as a distributed research infrastructure system for European CCUS. ECCSEL is a non-profit organization for the coordinated operation of multiple research facilities.	O eccsel
COALBYPRO - Innovative management of COAL BY- PROducts leading also to CO ₂ emissions reduction	01/07/17- 30/09/20	Study of CO ₂ mineral sequestration in fly ash & zeolites. Assessment of possible utilization of post-sequestration products. Outcomes: environmental management of coal mines following their closure & minimizing the environmental impact of hard coal combustion processes.	COLBYPRO

Characteristic Examples of CCUS & CCS projects in Greece

Project Title	Start-End	Description	
STRATEGY CCUS - Strategic planning of regions and territories in Europe for low- carbon	01/05/19- 30/04/22	Strategic plans for CCUS development at short (<3 years), medium (3-10 years) and long term (>10 years) in promising regions of SE Europe corresponding to 45% of EU CO ₂ emissions from industry & energy sectors.	STRATEGY CCUS A viable solution for a sustainable future
LEILAC2 - Low emissions intensity lime and cement 2: demonstration scale	01/04/20- 31/03/25	A new technology for capturing CO_2 emissions of European cement & lime industries. A demonstration plant capturing 100ktpa of CO_2 will be integrated in an operational cement plant. Aim: to scale-up to ~20% of a typical cement plant's CO_2 emissions.	Leilac 2
PilotSTRATEGY - CO ₂ Geological Pilots in Strategic Territories	01/05/21- 30/04/26	Understanding deep saline aquifers as means of CO ₂ storage in 5 industrial regions of SE Europe, by acquiring new data (seismic, geochemical, etc.).	
ConsenCUS - CarbOn Neutral cluSters through Electricity- based iNnovations in Capture, Utilisation and Storage	01/05/21- 30/04/25	An industrial plan for a net-zero carbon EU via the utilization of 3 electricity- based innovations: carbon capture based on alkali absorption, conversion of CO ₂ to formate & formic acids for market uses, and a safe cyclic loading system of CO ₂ into salt formations & aquifers for storage.	ConsenCUS
CEEGS - CO ₂ -based electrothermal energy and geological storage system	01/11/22- 31/10/25	Developing a multisector RES storage system including reversible trans-critical CO ₂ cycles, geothermal heat extraction, and CO ₂ geological storage. Aim: assess the techno-economic viability, cover the gaps between the technologies used, raising TRL from 2 to 4.	CEEGS

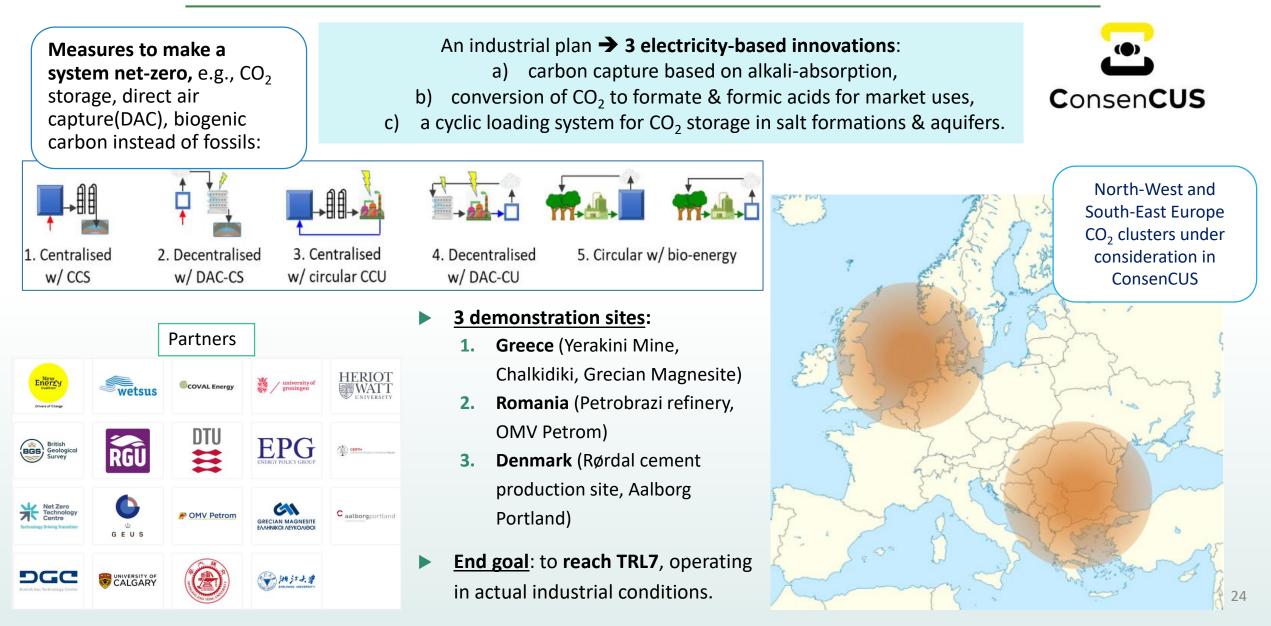
LEILAC 2 - Low emissions intensity lime and cement 2: demonstration scale

Proposed technology: Scalable & modular design, retrofitted to a **Heidelberg Materials cement plant** with a low-impact integration to its operations.

✓ Demonstration of **alternative & renewable** fuel sources use.

- Currently working on:
 - WP5 Dissemination and stakeholder engagement
- Most recent updates:
- <u>Task 5.1</u>: Social Impact Study → analyzing societal impacts of the CO₂
 storage/utilization solution of <u>WP4</u>.
- Key Performance Indicators (KPIs) → used to give detailed analysis in support of the Task 4.5 Roadmap (D4.6: CO₂ storage or use roadmap).
- Assessment of social & stakeholders' acceptance of the CCUS solution.

WP5 Partners:

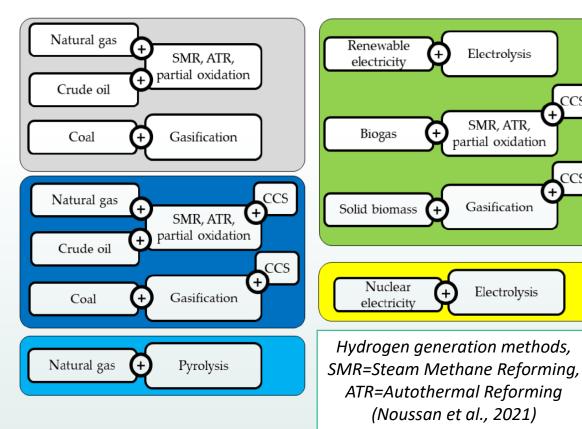

Study deep saline aquifers (DSA) as means of geological CO₂ storage in five European industrial regions. New acquired data (seismic, geochemical, etc.) → increase the maturity level for CCS applications in DSA.


PilotSTRATEGY

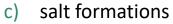
Partners

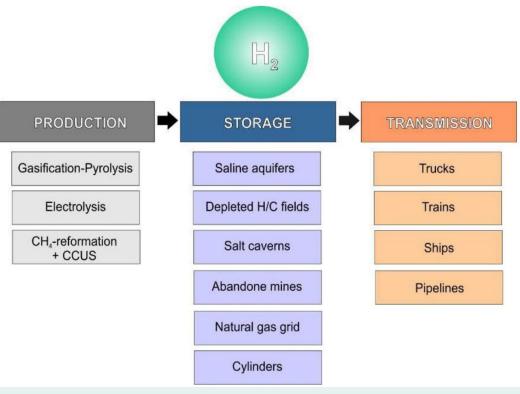
ConsenCUS - CarbOn Neutral cluSters through Electricity-based iNnovations in Capture, Utilisation and Storage

CEEGS - CO₂-based electrothermal energy and geological storage system


Prospects for combined use of Hydrogen & CCUS technologies

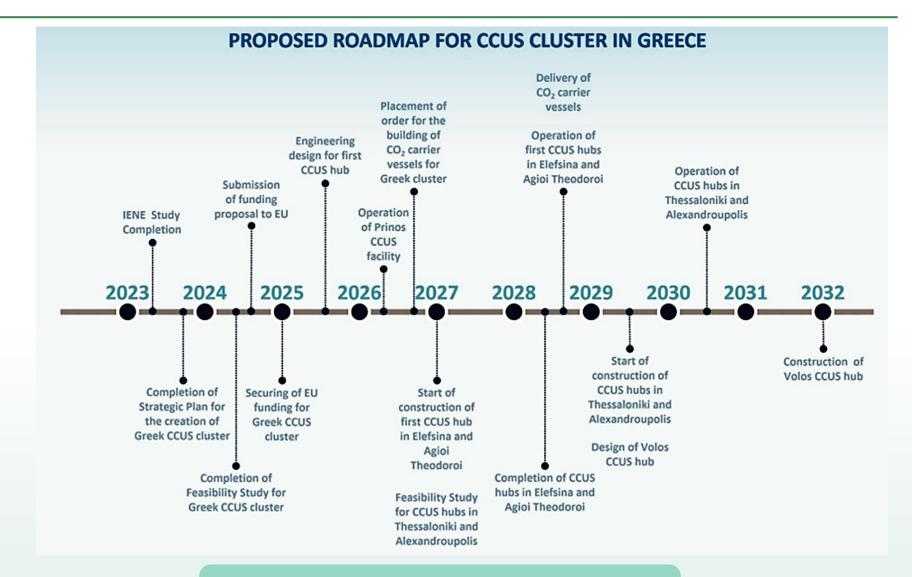
CCS?


CCS?


Synergies of CCUS and the H₂ value chain

- Potential synergies between CCUS & H₂ value chain \rightarrow reduction of atmospheric CO₂ emissions \rightarrow sustainable circular economy
- Hydrogen production methods \rightarrow different colours depending on the generation source.

- Underground Hydrogen Storage (UHS) can be applied at:
 - porous lithological formations a)
 - b) abandoned rock mines


Schematic diagram of the H₂ value chain

CO₂ & H₂ opportunities in Greece ⇒ Existing technologies & infrastructure

Existing technologies and infrastructure for the implementation of CCUS and H₂ technologies in Greece include:

- Infrastructure for CO₂ capture in industry (cement, iron and steel industries) and in lignite plants (e.g. Ptolemaida V plant).
- Infrastructure for CO₂ and H₂ transportation, e.g. gas pipeline systems, ports & railways.
- Geological storage sites.

Roadmap for CCUS implementation in Greece

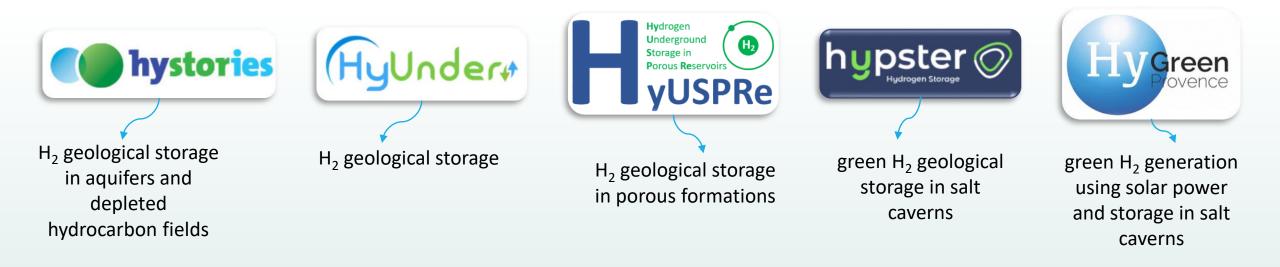
Proposed roadmap for CCUS applications in Greece

What is going on in EU now:		
The promotion of decarbonization solutions for the EU & shift to RES* in order to achieve net-zero	CCUS in Greece:	
The increasing CCUS applications & projects	 Encouragement of national government to set helping Regulations Policies in line with the EU plan for 	However, Greece:
projects	net-zero	Needs to update its Regulations &
The creation of CCUS hubs & networks in EU	Initiatives for CCUS applications &	Policies to align with the EU & activel participate in more CCUS activities & projects
RES: Renewable Energy Sources	projects in Greece	
	The integration of CCUS to the industrial & energy sectors	Need to promote research & development on CCUS
		Need to improve the funding
		mechanisms for CCUS projects

Characteristic Examples of CCUS projects in Europe

Project	Leading Country	Description
Acorn	UK	Storage in Deep saline aquifer
AC2OCem [*]	Germany	CO ₂ Capture
Athos	Netherlands	Full-chain CCUS
CarbFix	Iceland	CO ₂ Storage
<u>CEEGS</u> *	Spain	CCS integration to renewable energy storage system
LEILAC *	Belgium Germany	CO ₂ Capture
Northern Lights	Norway	CO ₂ Transport and Storage
<u>RISCS</u> *	UK	Framework management of CCS sites
Strategy CCUS *	France	CCUS scenario development
SCARLET	Γερμανία	Δέσμευση CO ₂

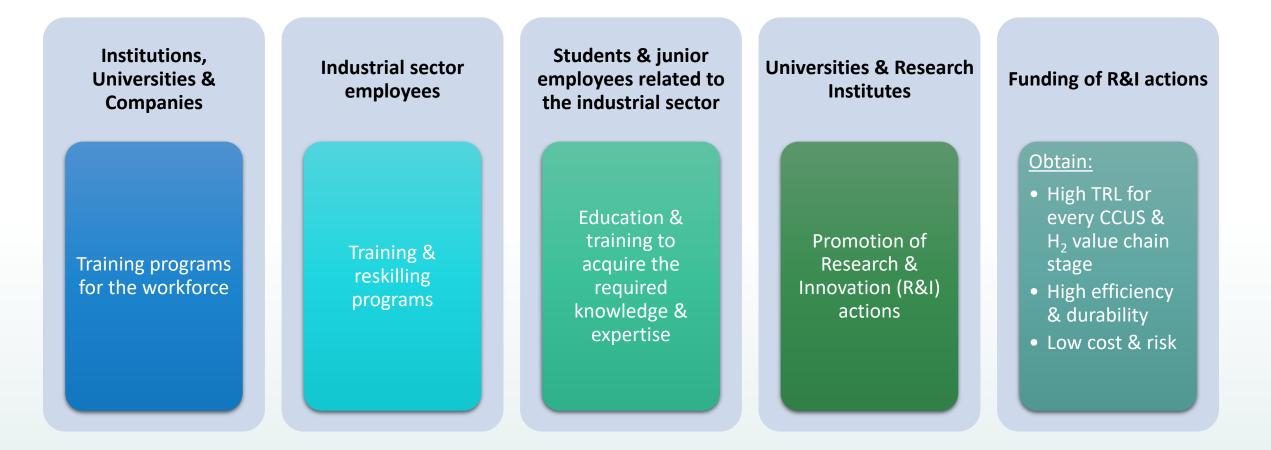
^{*}Greek participation in the European projects mentioned.


Examples of CCUS, CCS and CO₂ capture projects in Greece involving industries of the energy & cement sector

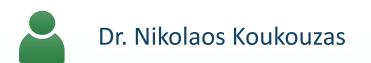
Project	Location	Description
Prinos CCS project (RRF funding, involves Energean)	Greece	CCS application: CO_2 capture & storage in offshore Prinos semi-depleted oil field & saline aquifer (North Aegean Sea) from local emission sources. Capacity 60.0 Mt (total), Injectivity 1.0 MtCO ₂ /yr (Phase 1) \rightarrow 3 MtCO ₂ /yr (Phase 2). Potential to include CO ₂ emissions from nearby countries (e.g., Italy, Croatia).
Project IFESTOS (Innovation Fund EU funded, involves TITAN Cement)	Greece, Magoula cement plant	Large-scale carbon capture unit in Magoula (Greece, TITAN), zero-carbon cement → expected to avoid 98.5% GHG emissions during cement production. CO ₂ capture via first- and second-generation Oxyfuel and post-combustion cryogenic capture technologies. Expected to reach TRL 8.
HERCCULES project (Horizon Europe funded, involves TITAN Cement & Energean)	Greece, Italy	CCUS in Italy & Greece: 2 main clusters of emitters \rightarrow in Northern Italy (a cement and an EfW cluster) & in Greece (a cement cluster). Capturing via advanced oxy-combustion and post-combustion technologies. CO ₂ utilization via mineralization \rightarrow carbonation. Expected to reach TRL 8.
OLYMPUS project (Innovation Fund, involves Heracles GCC & HOLCIM TECH LTD)	Greece, Evia, Milaki cement plant	Large-scale CCS. CO_2 capture by: (a) OxyCalciner carbon capture, (b) Cryocap TM Oxy technology (by Air Liquide Hellas S.A.) \rightarrow capture & purify CO_2 via oxy-fuel combustion. Expected CO_2 capture rate = 98%. Sequestration of up to 1 MtCO ₂ /yr in Prinos storage site & achieve avoiding 6.8 MT CO_2 during 10 years of cement plants operation.
Project IRIS (Innovation Fund, involves Motor Oil Hellas)	Greece, Corinth, Agioi Theodoroi MOH refinery	Incorporation of post-combustion carbon capture at an SMR unit \rightarrow CO ₂ capture & production of ultra-low emission H ₂ , coupled with a small-scale CH ₄ production unit. Expected CO ₂ capture rate 95% (495 ktpa of 522 ktpa emitted). H ₂ production: 55.2 ktpa (55,280 t/y) with carbon footprint less than 3.0 tCO ₂ /tH ₂

H₂ projects & current trends: European Projects

- The interest of the private sector and public bodies has shifted towards hydrogen and the potential for the development of its value chain due to:
 - the potential of hydrogen as an energy source.
 - its ability to be stored in order to satisfy energy requirements during high-demand periods.
- In recent years, an increasing number of partnerships have been established to develop the various stages of the hydrogen value chain through the implementation of projects.


Indicatively, some H₂ projects in Europe are mentioned:

Technological Gaps & Requirements:


Technological gaps & infrastructure deficiencies regarding CO₂ Capture & Utilization

Health, Safety & Environmental protection measures at every stage of each value chain Technological gaps & infrastructure deficiencies regarding CO₂ & H₂ Transportation and Storage Knowledge & Expertise Deficiencies:

Thank you for your attention

koukouzas@certh.gr

https://www.cperi.certh.gr/