

Road to Clean Energy Transition: Steps on Hydrogen

Dr. Nikolaos Koukouzas

Director of Research

Centre for Research & Technology Hellas / Chemical Process & Energy Resources Institute (CERTH/CPERI)

Athens, Greece 2025

Why Hydrogen?

Hydrogen value chain

Hydrogen value chain ⇒ describes the whole process from production to end use and consists of **4 stages**.

⇒ Each stage operates **independently**, but constitutes an **integral part** of the chain.

- Hydrogen can be produced by a variety of methods, such as steam methane reforming, electrolysis and biomass gasification.
- Some methods emit greenhouse gases (GHG) as by-products, while in other methods no gaseous pollutants are emitted.
- > The different hydrogen production methods are **colour-coded**:

H_2 value chain <u>Current focus</u>: Green H_2 Production

H₂ value chain: Hydrogen Transportation

✓ In the hydrogen value chain, **transportation** is identified **at 2 key-points**:

can be used

H₂ value chain: H₂ Transportation Alternative – Gas blending

H₂ value chain H₂ Transportation – 2 Preferred Methods

*LOHC: liquid organic H₂ carriers

Saline Aguifer

Underground H₂ storage in Porous media/Saline aquifers:

Schematic representation of hydrogen storage in porous rock. The impermeable caprock, forming an anticline that acts as a trap and the underlying porous reservoir rocks are presented.

⁽Source: Londe, 2021).

Hydrogen storage in porous media highlighting all geological uncertainties.

(source: Heinemann et al., 2020)

UHS in Salt formations (salt caverns)

- Large capacity and capable pressure conditions.
- ✓ Relatively inexpensive excavation.
- ✓ Higher rates of hydrogen storage and extraction → flexibility to supply energy to the grid when required.

UHS in Depleted oil & gas fields

- ✓ Optimum conditions for gas storage.
- Years of experience, advanced technological resources, existing facilities.
- Availability of a residual gas quantity, which can be used as cushion gas.

H₂ value chain: Hydrogen Storage (6)

(Source: Ozarslan A., 2012).

Underground H₂ storage in Salt formations (salt caverns):

Main principles:

A. Utilization of the natural pressure due to the overburdens

B. Large storage volumes & cylindrical shape of the deep geological formations (storage sites).

Construction of a storage salt cavern → achieved by a leaching process → using fresh / low salinity water.

Once the leaching is completed \rightarrow the gas injection discharges \rightarrow replaces the saltsaturated brine.

 H_2 withdrawal mechanism is based on reducing the pressure of the cavern \rightarrow a cushion gas is used in order to maintain the stability of the storage salt cavern \rightarrow H_2 delivery.

H₂ value chain: Hydrogen Storage (8)

Underground H₂ storage in Salt formations (salt caverns):

Suitability of salt formations for UHS is evaluated based on their:

depth
thickness
geographic extent
presence of insoluble impurities, e.g. anhydride or sedimentary interbeds (dolomite, limestone, or shale)

Criteria for selection of salt formations for UHS.

Criteria	Requirements		
Geology Rock Type	Salt formations		
Structure	Salt Domes or Bedded Salt		
Composition	95% of Halite		
Cap rock	Anhydrite, Gypsum, Limestone		
Depth	200–2000m		
Height of cavern (H)	Typical values around 300m		
Diameter of cavern (D)	Typical values around 70m		
Maximum Salt temperature	80 °C		
Volume of Storage	300,000–750,000m ³ (Salt domes);		
	100,000m ³ (Bedded Salt)		

Underground H₂ storage in Lined or Unlined hard Rock Caverns (LRC):

Excavated underground in solid rock formations/hard rock formations.

Reinforced with a specialized lining system ⇒ ensures a secure & controlled storage environment.

Natural rock: bears the structural load & withstands external pressures

Lining system: protective barrier (maintains the integrity and safety of the storage space).

Suitable geological formations:

- ✓ The category of hard rock formations
 - 1. Rocks of decomposition grade I to II (fresh / slightly decomposed).
 - 2. <u>Crystalline</u> materials & with <u>low primary porosity</u>
 - 3. Typically belong to the <u>crystalline basement</u> of most geological sequences
 - ➡ e.g., granite, gneiss, granodiorite, monzonite, basalt, gabbro, and other igneous / volcanic / metamorphic rocks.

To be avoided:

✓ Highly tectonic zones & Increased seismicity

regions

- ✓ Karst systems
- \checkmark High permeability rocks, sedimentary rocks

H₂ Production

H₂ Utilisation

• H₂ can be utilised to **fuel vehicle**, generate electricity or heat.

The H_2 production methods are codified by color.

- **Black/Grey H**₂: Generated via hydrocarbons. High CO₂ emissions.
- Blue H₂: Generated using hydrocarbons, combining CCUS.
- **Green H**₂: Produced by water electrolysis, using RES. Zero CO₂ emissions.
- Purple H₂: Produced by water electrolysis, using nuclear power.
- Turquoise H₂: Generated by fossil fuel pyrolysis.
- White H₂: Naturally occurring in underground geological formations.

mines

H₂ Transmission and Distribution The transportation of H_2 can be accomplished via various transport routes.

• H₂ is withdrawn from the storage site and properly processed to obtain a form that is suitable for use by consumers.

The already generated and stored H_2 can be utilised to cover the energy needs.

20

Utilization of Available H₂ Value Chain Infrastructure:

H₂ Transportation Network & Available Infrastructures / Retrofitting Prospects for combined use of Hydrogen & CCUS technologies -Synergies of CCUS and the H₂ value chain

H₂ Available Geological Storage Sites for UHS

H₂ Transportation in Greece – Available Infrastructure (1)

European Hydrogen Backbone plan for 2030 (Source: https://www.cehc.eu/h2-for-Europe/)

Projected expansion of the European H2 pipeline network 22 by 2040 (Source: EHB)

H₂ Transportation in Greece – Available Infrastructure (2)

H_2 transportation infrastructure \rightarrow pipeline networks

- H₂ transport by retrofitting existing gas pipes:
- **I.** Existing NG pipeline network \rightarrow can be adapted to transport $H_2 \rightarrow$ Reduces the costs of constructing a new network.
- II. Different properties of H_2 gas compared to NG \rightarrow may cause corrosion of the existing pipes \rightarrow MUST adapt the existing NG network.

Greece-Bulgaria natural gas interconnection pipeline

Turkey-Greece natural gas pipeline

Trans-Adriatic natural gas pipeline system (TAP)

Trans-Balkan pipeline

EastMed pipeline (under design)

Existing gas pipeline network in continental Greece (Source: <u>www.desfa.gr</u>)

H₂ Transportation in Greece – Available Infrastructure (3)

 H_2 transportation infrastructure \rightarrow shipping via Greek ports:

Ports (e.g., Piraeus port, Thessaloniki port) → space for industrial & commercial activity → can support numerous ships & boats (passengers / cargo) → Hydrogen hubs

Greek railway network:

line)

Western Macedonia (standard gauge line)	 Polykastro – Idomeni variant (new layout) Kommanos – Kozani (Public Power Corporation)
Peloponnese (standard gauge	 Rododafni – Rio, Isthmus – Loutraki Isthmus – Ag. Theodoroi

 Isthmus – Ag. Theodoroi (connection with Motor Oil facilities)

Larger volumes of H₂ and longer distances than trucks.

Transportation tanks: materials compatible with H₂ properties to prevent any leakage due to corrosion.

Existing railway network of continental Greece (Source: <u>www.ose.qr</u>)

H₂ Storage sites in Greece

(Source: Arvanitis, Koukouzas, et al., 2020)

Prospects for combined use of Hydrogen & CCUS technologies

CCS?

CCS?

Synergies of CCUS and the H₂ value chain

- Potential synergies between CCUS & H₂ value chain \rightarrow reduction of atmospheric CO₂ emissions \rightarrow sustainable circular economy
- Hydrogen production methods \rightarrow different colours depending on the generation source.

- Underground Hydrogen Storage (UHS) can be applied at:
 - porous lithological formations a)
 - b) abandoned rock mines

Schematic diagram of the H₂ value chain

H₂ Applications In Europe: Projects & current trends (1)

How have these been applied so far in Europe & Greece?

The interest of the **private sector** and **public bodies** has shifted towards **hydrogen** and the development potential of its value chain due to:

- the **potential** of hydrogen as an **energy source**.
- its ability to be stored in order to satisfy energy requirements during highdemand periods.

In recent years → increasing number of **partnerships** to develop the various stages of the **hydrogen value chain** → through **implementing** H₂ **projects**.

	H ₂	proj	jects	in	Europe	:
--	----------------	------	-------	----	--------	---

hystories	H ₂ geological storage in aquifers and depleted hydrocarbon fields	Partners from: Austria, Belgium, Croatia, Czech Republic, Denmark, England, Estonia, France, Germany, Greece, Italy, Norway, Poland, Portugal, Romania, Spain and Turkey
HyUnder	H ₂ geological storage	Partners from: Germany, Spain, France, Romania, the Netherlands and the UK
Hydrogen Underground Storage in Porous Reservoirs yUSPRe	H ₂ geological storage in porous formations involves potential storage sites located in SEE (Bulgaria, Serbia, Romania, Greece, Turkey)	Partners from: Netherlands, Austria, the UK, Germany, Italy, Slovakia, Hungary and Norway
hypster Ø	Green H ₂ geological storage in salt caverns	Partners from: Germany, France and the UK
Hygreen	Green H ₂ generation using solar power and storage in salt caverns	

H₂ projects in Europe :

CRAVE H2	H ₂ storage, aggregation activities and green mobility applications in the Hydrogen Valley of Crete-Aegean	Partners from Greece, Italy and Denmark
TRIĒRĒS	Build a valley by exploiting the refinery facilities as H ₂ producers in the Motor oil refinery in Corinth	Involves partners from 5 countries: Greece, Cyprus, Egypt, Netherlands and Austria
HY South Marmara	A green H ₂ valley to achieve carbon neutrality in South Marmara, Turkey (production, storage, transportation)	Partners from Turkey, Morocco, Italy and Germany
GRACy Green Hydrogen Cyprus	Green H ₂ production from RES for the transport sector, to refuel trucks and replace diesel vehicles in Cyprus	Partners from Cyprus

What needs to be filled in?

Gaps & Requirements in Greece

Technological Gaps & Requirements:

Technological gaps & infrastructure deficiencies regarding H₂ Production

Health, Safety & Environmental protection measures at every stage of the value chain Technological gaps & infrastructure deficiencies regarding H₂ Transportation and Storage

What needs to be filled in?

Gaps & Requirements in Greece

Knowledge & Expertise Deficiencies:

What needs to be filled in?

Thank you for your attention

+30 211 1069502

koukouzas@certh.gr

https://www.cperi.certh.gr/

Acknowledgements

asimakopoulou@certh.gr

Indicative References

- Ajanovic, A.; Sayer, M.; Haas, R. The economics and the environmental benignity of different colors of hydrogen. International Journal of Hydrogen Energy, 2022, 47, 57: p. 24136-24154.
- Arvanitis, A.; Koutsovitis, P.; Koukouzas, N.; Tyrologou, P.; Karapanos, D.; Karkalis, C.; Pomonis, P. Potential Sites for Underground Energy and CO2 Storage in Greece: A Geological and Petrological Approach. Energies, 2020, 13, 11: p. 2707.
- Carneiro, J., Matos, C., van Gessel, S., 2019. Opportunities for large-scale energy storage in geological formations in mainland Portugal. Renewable and Sustainable Energy Reviews, 99: 201-211.
- Heinemann, N., Alcalde, J., Miocic, J. M., Hangx, S. J. T., Kallmeyer, J., Ostertag-Henning, C., ... Rudloff, A. (2021). Enabling large-scale hydrogen storage in porous media the scientific challenges. Energy & Environmental Science, 14(2), 853–864. doi:10.1039/d0ee03536j
- <u>https://www.cehc.eu/h2-for-Europe/</u>
- Londe, L.F. Four Ways to Store Large Quantities of Hydrogen. in Abu Dhabi International Petroleum Exhibition & Conference.
 2021. Abu Dhabi, UAE.
- Longden, T.; Beck, F. J.; Jotzo, F.; Andrews, R.; Prasad, M. 'Clean' hydrogen? Comparing the emissions and costs of fossil fuel versus renewable electricity based hydrogen. Applied Energy, 2022, 306: p. 118145.
- Ozarslan A., 2012. Large-scale hydrogen energy storage in salt caverns, 37 (19): 14265 14277.
- Taiwo, G. O., Tomomewo, O. S., & Oni, B. A. (2024). A comprehensive review of underground hydrogen storage: Insight into geological sites (mechanisms), economics, barriers, and future outlook. Journal of Energy Storage, 90, 111844.
- Tarkowski, R., Underground hydrogen storage: Characteristics and prospects. Renewable and Sustainable Energy Reviews, 2019, 105: p. 86-94.
- The European Hydrogen Backbone (EHB) initiative, <u>https://ehb.eu/</u> (Accessed 24/07/2024)
- United Nations / Framework Convention on Climate Change. Adoption of the Paris Agreement, 2015, 21st Conference of the Parties, Paris: United Nations.
- www.desfa.gr (Accessed 19/07/2024)
- www.ose.gr