IENE

6° Ενεργειακό Συμπόσιο Κύπρου, 4η Δεκεμβρίου , Ξενοδοχείο Hilton Park, Λευκωσία

ENERGY EFFICIENCY AND SOLAR ENERGY FOR SUSTAINABLE CITIES IN CYPRUS

Professor Despina Serghides

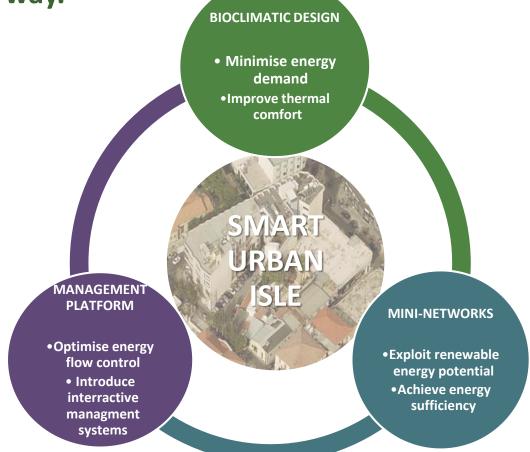
European Commissi Smart Cities Member States Initiative

Ίδρυμα Προώθησης Έρευνας

Contents

- 1. Introduction
- 2. Aim and Objectives
 - 3. Methodology
- 4. Case study Status Quo
- 5. Case study Scenarios
 - 6. Results
 - 7. Implementation
 - 8. Conclusions

1. Introduction Urbanisation and Energy


- Energy is the main parameter that determines the quality of life in cities as well as their environmental quality.
- In Cyprus the buildings are responsible for 30% of the total energy used in the country, and in particular account for 80% of total electricity consumption.
- Urbanization dramatically affects energy consumption.

With rapid urbanisation, sustainability in Cities nowadays is more crucial than ever

2. Aim and Objectives –SUI Project

Aim: Move forward with the urban energy savings and reduce CO2 emissions. Based on a three cornerstones procedure, propose a whole new urban planning that allows cities to grow in a sustainable way.

3. Methodology

- 1. The energy consumption and the CO2 emissions associated with a typical urban Isle from the city center of Limassol were investigated and are showcased
- 2. The shortcomings are identified

3. A set of scenarios aiming to improve the energy efficiency, to utilize solar energy and reduce the CO2 emissions are proposed.

The scenarios include, bioclimatic measures and the introduction of RES towards reducing the CO2 emissions

4. Evaluation of the results and conclusions

general information

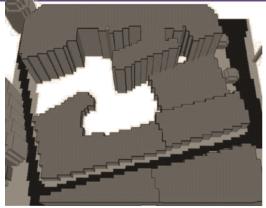
Urban isle characteristics

Location: Limassol, Old town centre

Uses: retail stores and education, cafeterias, wine and cocktail bars.

Total built area: 5,400 m2

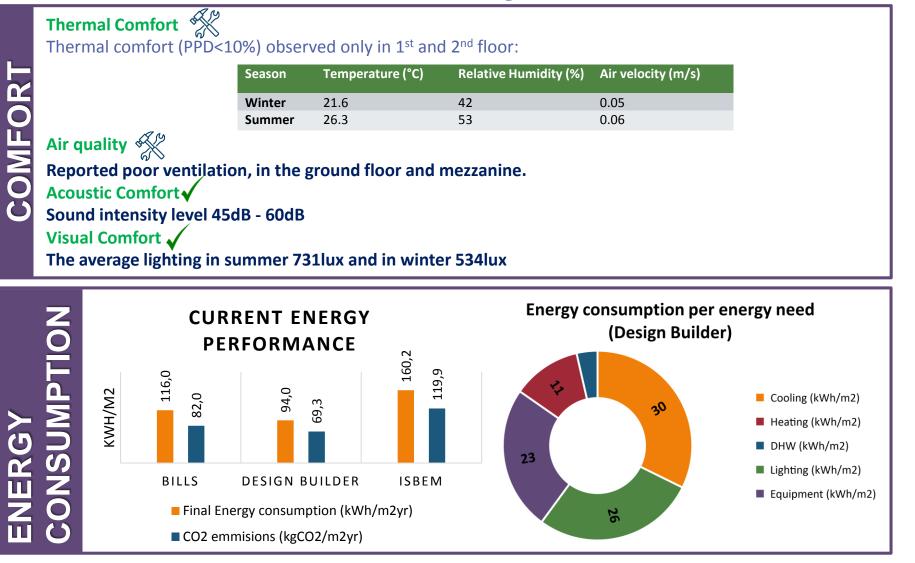
Non-residential buildings: 12


The Public Building: University Administration building

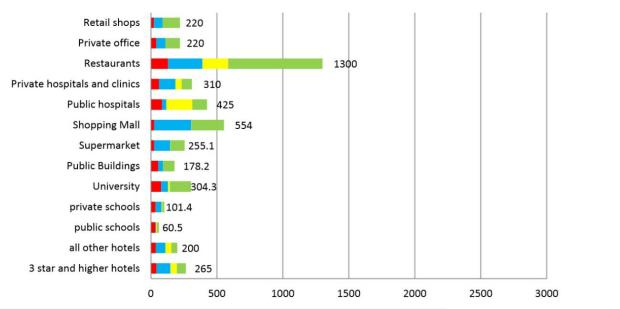
Construction: 1979

Renovations: 2011 & 2015

Description: 3-storey building. It is equipped with all kind of services. It includes approximately 60 workplaces, a lecture room and 2 meeting rooms.


THE ISLE

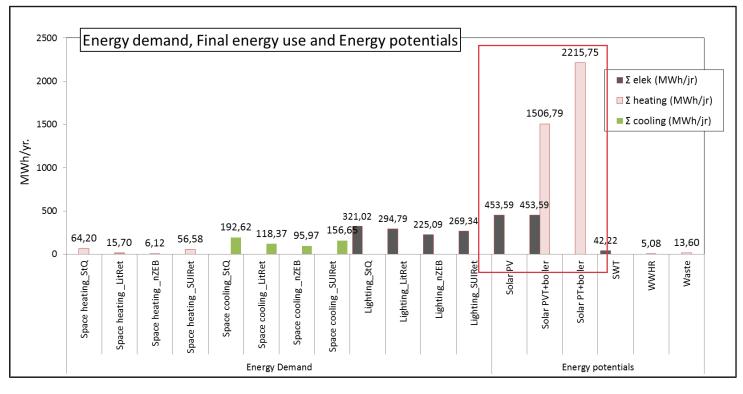
THE BUILDING



the building

4. Case Study - Status Quo the area

Annual final energy consumption (kWh/m2yr) per building use in Cyprus


_	Basic function	Nr. Of UNITS	
5	Office (university admin)	1	
	Educational (labs)	1	
3	Small supermarket	1	Area Total
5	Café/Bar	⁵ 577 (MWh/yr)	980
	Services (locksmith, printing centre)	2	(MWh/yr)
5	Retail (clothing, jewllery, electronics)	7	
	Empty	4	

CONSUMPTION

ENERGY

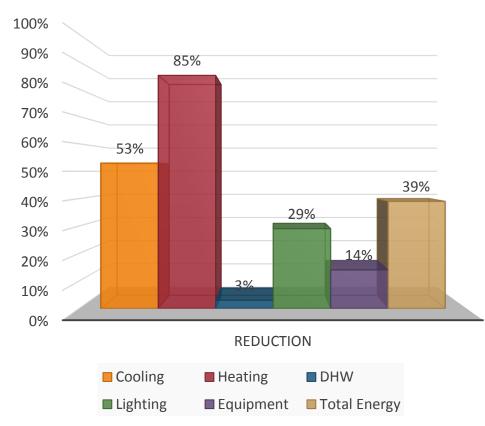
renewable energy potential

Overview of total potentials per source						
Sources	Electricity potentials [MWh/yr.]	Heating potentials [MWh/yr.]				
PV panels	454					
PVT	454	1507				
ST		2216				
SWT	42					
Waste		13.6				
Sewage		5				

Energy profile & CO2 emissions

SUI Energy Profile_Limassol	SUI Energy Profile_Limassol		
CO2 emissions (kgCO2/m2)	final energy (kWh/m2)		
Building	Building		
80	116		
Area	Area		
142	220		

181.5 kWh/m2yr Final energy consumption 980 MWh/yr


Shortcomings and potentials

- Energy performance deficiencies
- High energy consumption in buildings due to the poor energy performance of the building's envelope
- Minimum onsite renewable energy production.

Up to <u>2216MWh/yr</u> <u>potential</u>in production from <u>RES</u>

5. Case Study - Scenarios building

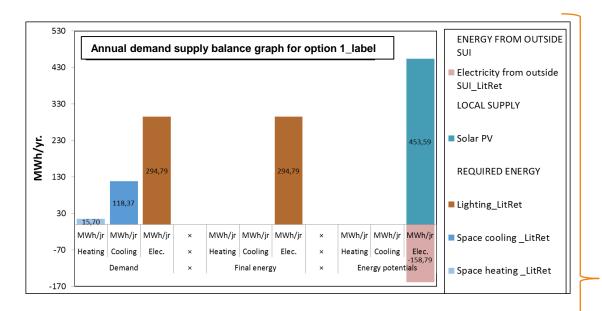
Percentage energy reductions

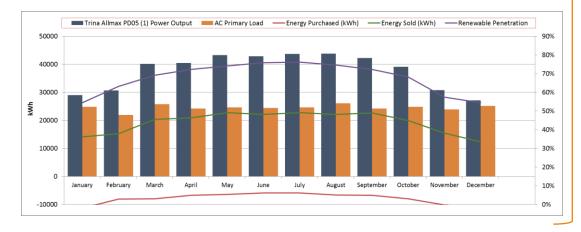
Total Energy Reduction 40% CO2 emissions reduction: 57%.

Smart ZEB Scenario

- 1. Replacement of the air-conditioning of the ground floor and mezzanine with ones of SCOP 5.5 and SEER 6.5
- 2. Replacement of existing light bulbs with LED throughout the building
- 3. Control the indoor temperature
- 4. Cool paint for the roof
- 5. Add window film shade in the single glazed windows
- Add 120m2 PV panels on the roof and 24m2 on the south wall

5. Case Study - Scenarios

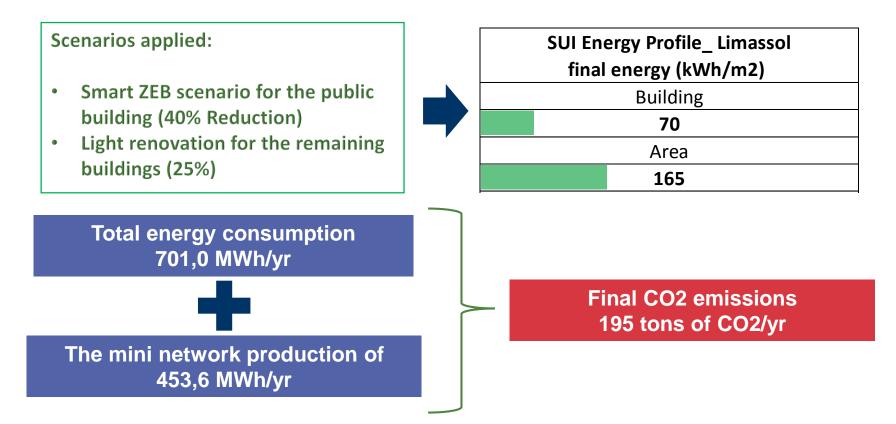

Building Renovation and Mini Network concept


	RENOVATION SCENARIOS	а	b	С	d
MINI-NETWORK ENERGY CONCEPTS		Status quo (StQ)	Light renovation (label)	Deep renovation (nZEB)	SUI renovation (SUIRet)
1	PV system covering only electricity	1_StQ	1_label	1_nZEB	
2	Off-grid PV system covering only electricity	2_StQ		2_nZEB	
3	3 PV/PVT+HP+Electrically driven vapor compression cooling system			3_nZEB	3_SUIRet
4	4 PV/PVT+HP+Solar absorption air conditioning system		4_label	4_nZEB	4_SUIRet

Light renovation applied to all the buildings in the SUI + RES (PV) Average reduction in energy consumption : 25%

Light renovation: Roof and wall insulation (6-8cm), replace single with double glazing, upgrade air-conditioning systems

5. Case Study - Scenarios Mini network concepts



On a yearly and a monthly basis the system is 100% self-sufficient (excl. cooling and heating)

On an hourly base it is around 68% self-sufficient

6. Results

Energy profile and CO2 emissions

Energy Efficiency Refurbishments + RES (mini network) =Almost 65% reduction in energy consumption = Almost 70% reduction in emissions

7. Conclusions

1. High energy savings in heating and especially in cooling in buildings can be achieved and hence considerable CO2 emissions reduction with energy efficient Refurbishment (Cool paint, shading film etc., without the addition of insulation).

2. The national legislation should take into consideration and incorporate measures alternative to insulation for enhancing the energy performance of buildings.

3. A mini network, PV system covering electricity in the Urban isle is 100% self-sufficient

4. It is possible to create a positive energy Urban Isle through a combination of deep and light energy refurbishments and with the utilisation of solar energy, thus contributing to the development of Sustainable cities

European Commission Smart Cities Member States Initiative

Thanks to the EU and the Research Promotion Foundation for funding, in the frame of the collaborative international Consortium (SUI) financed under the ERA-NET Cofund Smart Cities and Communities Cofunded Call. This ERA-NET is an integral part of the 2014 Joint Activities developed by the JPI Urban Europe.

Thank you!

http://smarturbanisle.eu/ http://www.cyi.ac.cy/index.php/sui-overview.html