Dr. Dinos Nikolaou - George Panagopoulos, 3rd IENE Workshop, Athens 30-31 October 2018 Energean OIL & GAS

West Katakolo Field Development: A unique analogue for Western Greece

Katakolo Discovery

- West-Katakolo Field was discovered by the State Oil Company (DEP-EKY) in the early '80s by three offshore wells (WK-1, WK-1A, WK-2)
- Both Oil and Gas zones were tested, with flow rates 1000-1500 MMbbl/d and 14-23 MMSCF/d respectively
- The development of the field was uneconomic on the basis of the low oil-prices during the '80s

West-Katakolo location

Λουτρά Κυλλήνης

Ζάκυνθος, πηγή Ηροδότου (480 π.Χ.)

Current situation

Block split

- Exploitation Area: 59sqKm. Effective date 26/8/2016.
 Duration 25yrs. 5+5yrs optional extension
- Relinquishment area 136sqKm (25% of the initial area)
- Exploration Area 350sqKm. Effective date 3/10/2016 for 5 yrs.

Field Development Plan

- Drill 4 ERD wells, 3 producers & 1 sour-gas injector
- Crude Oil-storage and Sour-Gas Injection (SGI) facilities
- Offshore off-loading to Sigma processing plant in Kavala.

Exploration license

- G&G studies in the 2nd Exploration phase
- 1 onshore well in the 3rd Exploration phase

	Gross (100%)	Future Net Revenue After Income Tax ⁽¹⁾ (MM\$)			
Category	Oil Reserves (MMBBL)	Total	Present Worth at 10%		
Proved Undeveloped	6.3	126.8	59.0		
Proved (1P)	6.3	126.8	59.0		
Probable	4.2	146.1	55.1		
Proved + Probable (2P)	10.5	272.9	114.1		
Possible	5.8	214.0	52.5		
Proved + Probable + Possible (3P)	16.3	486.9	166.6		

(1) Taxes include both corporate and municipality taxes.

Porosity	Original Oil-in-Place (MMBBL)			Gross Recoverable	Recovery Factor ⁽²⁾ (%)				
System	1P	2P	3P	1P	2P	3P	1P	2P	3P
Matrix	13.4	25.0	41.6	1.1	2.5	4.9	8	10	12
Fractures	5.2	8.9	14.3	4.6	8.0	13.1	88	90	91
Arithmetic Sum ⁽³⁾	18.6	33.9	56.0	5.6	10.5	18.0	30	31	32
Probabilistic Sum	21.2	34.3	52.6	6.4	10.7	16.8	30	31	32

⁽¹⁾ Technically recoverable volumes associated with reserves are prior to application of economics. The portion of the volumes that are economic are classified as reserves.

⁽²⁾ Recovery Factor is calculated by dividing unrounded Gross (100 Percent) Technically Recoverable Oil Volumes by unrounded Original Oil-in-Place. See Volumetric Input Parameters for recovery factor input distributions.

(3) Arithmetic sums do not include the portfolio effect that might result from statistical aggregation and may not add because of rounding.

2013	2014		2015			2016			2017				2018	7
SEIA 8/8/13	Effective Date 3/10/14	EBR SoW 30/4/15	EBR 1 st Phase 21/8/15	EBR 2 nd Phase 9/10/15		1st Phase deadline 3/10/16	ESR (with FDP) 24/2/17			ESIA award Sept-17	PDER submitted 16/11/17	ESIA On-going	PDER Approval 4/5/18	
	•	۲	0	•		• •		•	•	۲	•	۲	• •	
					Declaration of Commerciality 26/8/16	Approval of Declaration of Commerciality 26/10/16	FDP submission 24/2/17	Amendments on the New Exploration Area April-17	FDP approval 21/8/17			Aareement on the	New Exploration Area March-18	

□ ESIA – Permits: Phase A: Pilot well (Injector) and Horizontal well (Producer) (to be submitted in 2018) Phase B: Facilities (follows just after)

FID (A) or farm down in 2019

□ FDP Stage 1: Application of the Approved FDP

1. <u>FDP Phase A</u>: Pilot well \rightarrow completed as Gas Injector (Q4/2019)

Given Big End (B) May 2020

- 1. FDP Phase B:
 - 1st Horizontal Producer (1500 bbl/d) (May 2020)
 - Install necessary facilities
 - Initial production 1500bbl/d (2021/2022)

2. <u>FDP Phase C</u>

- 2nd Horizontal Producer (increase production +1500 bbl/d = 3000 bbl/d)
- 3rd Horizontal Producer (stabilization at 3000 bbl/d)

FDP Stage 2: Application of a New FDP. After the depletion of Oil, for Gas Production.

1. Phase A:

- Convert Gas injector to Gas producer
- Convert existing facilities and install new facilities for Gas production
 - Scenario A: For electricity production
 - Scenario B: For Gas sales

Katakolo harbour: then and now

- Tourist activity is the main economic activity in Katakolo
- Environmentally sensitive area

West Katakolo Field Development Plan - Decision Tree

Well-site selection

Well-site layout

Skid-mounted units for minimum environmental impact and easy decommission

Well Design of the first 2 wells

TATE FOR THE R. P. ALLED FOR ST. F. P. R. R.

SGI scheme: Gas dehydration & Sour Gas compression

Offshore off-loading to Sigma plant in Kavala

- A 3-Point Conventional Mooring System was selected
- One 10" subsea pipeline
- 530m³/h offload rate \rightarrow offload duration of 6h

Drilling impact zones – Seveso directive

 The consequence modelling serves to assess the magnitude of the physical effects (heat radiation, overpressure, flammable and toxic gas ranges) associated with the Major Accidents Scenarios affecting people and environment

Exploration Area

DSTs onshore biogenic gasses

2. dugpara ani sa diarpadéra gangagané Tgapara

Objectives

- To define and assess the upsides
- To add value on the license
- To co-exploit the upsides with W. katakolo Field

Thank you!

www.energean.com

