

Chasing hydrocarbon reserves in Carbonate Buildups: Examples from the Eastern Mediterranean

- N. Papadimitriou
- K. Oikonomopoulos
- G. Makrodimitras

Outline

	Introduction	
(Data and Methods	
(Geological Setting	
	Carbonate Buildups in the East Mediterranean	
(Conclusions and Future work	

What is a Carbonate Platform?

A body of shallow carbonate strata 25N deposited as a geomorphic feature adjacent to deeper-water strata and include different facies (reefs, lagoons, tidal flat deposits).

Why it is important;

They host significant hydrocarbon resources

Examples of good reservoirs:

- The Carboniferous of North America (360-299 Ma)
- The Permian of the United States (298-250 Ma)
- The Mesozoic in the Mediterranean (200- 65 Ma)
- Tertiary Southeast Asia and Brazil. (24-5 Ma)

Geophysical studies

- Seismic Interpretation
- Well data
- Magnetic anomalies map (UGGS)
- Gravity map

Study Area

(a) Mountain belts due to continental Collison

- (b) Fold and thrust belts
- (c) Accretionary complexes
- (d) Intracontinental belts
- (e) Back Arc basins
- (f) Tethyan ocean

Distribution of Isolate Carbonate Platforms in the Mediterranean (Giovanni Rusciadelli and Peter Shiner, 2018)

Geological Setting

Late Permian-Triassic-Jurassic

Tethyan rifting Opening of Neo-Tethys ocean

Examples:

North:

- ICPs developed on the Adriatic microcontinent (Apulian, Adriatic-Gavrovo-Tripolitza)
- Menderes platform
- Taurus platforms

South:

- Eratosthenes Carbonate Platform
- Levant and Egyptian Margin

(after Vrielynck et al., 2014)

Examples from Eastern Mediterranean

Hyper extended margin with thin continental crust (Inati et al., 2016)

Experience several tectonic processes:

- Rifting
- Passive margin development
- Convergence and ophiolite emplacement (e.g., Dewey et al., 1973; Garfunkel, 2004; Aksu et al., 2005; Le Pichon and Kreemer, 2010).

Bounded:

North: Collision zone

East: Stike-slip (major plate boundary) West: Isolate Carbonate platform to the west South: Nile delta

Seismic interpretation

Eratosthenes Carbonate Platform

Seismic Interpretation

PGS

Seismic Interpretation

	Maastrichian		Open marine condition		
vceous	Campanian		Basinal to outer shelf limestones and chalky limestones		
	Santonian	KIROMAN			
100-65Ma)	Coniacian				
UPPER CRET AC (101-65Ma	Turonian		Shallow marine condition Peri-tidal to shelf platform carbonates with terrigenous clastic inputs		
	Cenomanian	AUDIE/8 AN			
		ABC SUBERIA	Transitionnal coastline, deltaic		
a l	Albian	DAHAB SHALE	environment subject to strong terrigenous influences		
DOR:	Aptian	ALAMED	Shallow water peritidal deposition		
LOWER CRETACEOUS (145-160Ma)	Barremian		-Marine sublittoral environment subject		
ER C (145	Hauterivian	ALAM EL BOTH	to a high terrigenous sediment input		
NOT	Valanginian	ALASI IL DOLL	-Inner sub-littoral carbonate shelf		
	Berriasian		environment with moderately high energy		
-	Tithonian	mulint	LOUBY		
	Kimmeridgian	MASSADD	Inner carbonate platform with high energy oolitic shoals or reefal limestone		
03	Oxfordian	Vint 4	High energy transitionnal clastic		
JURASSIC 200-145Ma)	Callovian	КНАТАТВА	shoreline deposits		
305	Bathonian	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			
	Bajocian	5-1	Non marine in Barbein		
	Aalenian	BARHEIN NATRES	Marine in Wadi Natrun		
		777			

www.greekhydrocarbons.gr

Tethyan Carbonate Platforms (Apulia)

С

- Similarly during the Mesozoic, the Apulian platform was isolated and could be a good analogue.
- Deep-water gravity flow carbonates of Late Cretaceous outcropping in the Gargano Peninsula and the Maiella Mountain are analogous with 6000 Eratosthenes gravity driven deposits.

Hellenic Arc

Fold belt

CM: Cretan marginBS: BackstopMR: Accretionary prism

Bounded

North: Crete South: African plate East: Herodotus Basin West: Hellenic trench

Makris et al., 2013

- The **position of basement-high (ICPs)** is controlled by structures inherited from the rifting.
- Studies on Eratosthenes and Apulia carbonate platforms point out the fundamental differences between platform facies and basinal facies.
- Tectonism is related with the initiation and the drowning of carbonate platform (including both compressional and extensional tectonics).
- The **distance** of the paleo-relief from the continent has a fundamental role in the evolution of a carbonate platform.

Understanding the regional geology is great tool for HC exploration!

Thank you for your attention!

RESOURCES MANAGEMENT

2018, All rights reserved, Hellenic Hydrocarbon Resources Management S.A. ("HHRM S.A.") Copyright Notice

This brochure has been designed by HHRM S.A. and it is protected by any applicable copyright and other intellectual property laws. This document is the exclusive property of HHRM S.A.. No portion of this document may be reproduced or duplicated, in whole or in part, without the express written consent of HHRM S.A. and any review, use, distribution or disclosure of the information contained herein by unauthorised persons is strictly prohibited.

ESP1- 2: LATE JURASSIC?

Depth map of top ESP1-2 seismic unit.

ESP3: EARLY CRETACEOUS

ESP4: CRETACEOUS

ESP6- Miocene

HHRM

HELLENIC HYDROCARBON RESOURCES MANAGEMENT

Miocene Carbonate Platform Collision of Africa- Eurasia

Offshore Israel

MINISTRY OF ENERGY, COMMERCE

100

phal	Period	Epsch		Sagi/Agi	i 33	Natives	Stratigraphy	Southeast		Age 194		
46		Mah							Sealered	(46		
48				Tithonian		Ymu			5	148		
50					152.1		110		-Sinta	150		
52			E	18.1	1.0.1				T		3	152
54				Kimmeridgian				Hahiza		154		
56			am		158.4	2		500000000	2	156		
58			· · · ·	Oxfordian	160.7	Deita		Beer Shern	7	198		
60					100.7		Sur-Am	Store entring	- <u>_</u>	160		
62		i = i	in	and and a second second	163.5			Kidod	2	162		
64			1000	Callovian	165.4		Citizen		15 C	164		
54				Bathonian	168.3	Shadent.	And a second second	Sharif	1	166		
68		Dogget	18.1	Bajocian	170.2	2 9 Bamea Up	Shudarot	Daya	5	168		
70	12	Â,		All	1000000		Unne	Innar	E I	170		
22	Jurgenc		194.7	Aslenian	172.9					172		
14	3				175.8		Qaran		- /	174		
7E				Tourcian		Lower Jumar			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	126		
78								ť) – (2	128		
80		Lass			182.8			1	180			
83			50	Plientbachian	C73			6	t	182		
64									······ 7	194		
9E						Ardon			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	186		
83			163							198		
90			184	Sinennina	191.7			1	S	190		
92						Mishhor			ŝ.	192		
94)	194		
96. 98			0.04		198.I					196		
		1	181	Hettangian	1				7	198		
00			2017	- Michagana				8		200		

Offshore Western Greece: The current study

Top Cretaceous-Paleocene carbonates corresponds to the top of undifferentiated, i.e. pelagic versus shallow-water carbonates belonging to the Hellenides Thrust and Fold Belt.

The top undifferentiated carbonates is most often represented by the base Neogene Flysch but these carbonates could also be directly onlapped by Messinian or Pliocene sediments.

The distinction between shallow-water versus pelagic carbonates is made on the base of regional knowledge and seismic facies comparison with the North Ionian Offshore. Then shallow-water carbonates are mostly characterized by a massive transparent facies showing little internal stratification as on seismic line 3014 across the Chryssi-Koufonissi block between the Ptolemy and Pliny troughs and on previous figures showing seismic Knowing that only future drilling will enable further distinction, carbonates that does not look like shallow-water carbonates are by default attributed to the Pindos series in the continental margin