

PHAETHON COE INTELLIGENT, EFFICIENT AND SUSTAINABLE ENERGY SOLUTIONS

PANOS PAPANASTASIOU

Professor University of Cyprus PHAETHON R&I Centre of Excellence

Transformation to Excellence

- Upgrade FOSS Research Centre for Sustainable Energy of the University of Cyprus established in 2014
 - Secured over €25 million from EU research programmes and industrial funding
 - Participation/coordination in over 80 national/international research projects
 - Strong research programme, research distinction and awards, over 400 research publications
- to PHAETHON a world-class autonomous and self-sustained Centre of Excellence (CoE)
 - Conduct state-of-the-art research on intelligent, efficient and sustainable energy solutions
 - Become a world-class Innovation Hub, enhancing socioeconomic development at national and regional levels

PHAETHON Teaming Project

- Start: September 2023
- Duration: (at least until) 2033
 - Teaming: 6 Years
 - Sustainability Plan: 10 Years
- Budget: €50mln
 - €15mln EU funding
 - €30mln Complementary funding
 - €5mln Building

Teaming Consortium

The project will receive funding from the European Union's Horizon Europe Research and Innovation programme

Diversification of Activities

1

2

3

4

5

Renewable energy sources and grid integration

Solar energy, Photovoltaic technologies, Grid integration technologies

Storage and e-mobility

Renewable energy storage, Battery energy storage systems, Smart charging and V2G

Green hydrogen

Green hydrogen production, Green hydrogen storage, Hydrogen conversion and use

Smart grids and intelligent energy

Digital energy technologies, Energy flexibility and analytics, Novel energy markets

Energy socio-economics, multi-level governance and environmental sustainability

Socio-economic impacts, Energy governance, Environmental assessment

- Cutting-edge research targeting the main research challenges of the energy sector.
 - Renewable generation, integration, smart grid technologies, energy storage, carriers and social acceptance.

Renewable energy sources

- Solar energy
- Photovoltaic technologies
- Grid integration of renewables

H₂

Smart grids

- Digital energy technologies
- Energy flexibility and analytics
- Novel energy markets

Storage and e-mobility

- Battery energy storage systems
- Renewable energy storage
- Smart EV charging technologies

- Social aspects and acceptability
- Energy multi-level governance
- Environmental sustainability

Green Hydrogen

- Novel production techniques
- Storage and transportation
- Hydrogen conversion and use

14/11/2023

PHAETHON Internal KoM

Novel infrastructure (10,000 m²) to serve needs of tomorrow and highest technology readiness.

- Comprise of 4 laboratories:
 - Renewable and Grid Integration
 - 2 Future Storage
 - Smart Grid
 - Oigitalised Energy
- Consist:
 - test-facilities
 - ➤ test-beds
 - ➢ pilots

State-of-the-Art Infrastructure

Net-Zero Building: ≻ 3,000m²

Comprising of: > Laboratories

- Research Office
- Innovation
- Education Hubs

Educational Centre

✓ PhD programme
✓ MSc in Sustainable Energy
✓ MOOCS (online courses)

Skills Development Centre

✓ Advanced scientific courses
✓ Technical skills training
✓ Summer training school
✓ Entrepreneurship programme

Vocational Training Centre

✓ Photovoltaic technologies

✓ Battery storage

✓ Green Hydrogen

✓ Smart energy solutions

Hydrogen Technical group (HI-TECH)

Hydrogen Technical Team of Phaethon CoE*

	Name	Area of Expertise	Hydrogen Topic
1	Dr Alexandros Arsalis	Thermodynamics/ Energy Systems	Design, modelling, optimization, and experimental characterization/testing of novel
			green hydrogen energy systems (including electrolysis, hydrogen storage, fuel cells,
			and auxiliaries) from the kW to the MW scale.
2	Dr Andreas Olympios	Techno-economic modelling, Energy conversion &	Design and operation optimisation tools for the integration of green hydrogen into
		storage, Smart control, Energy systems	multi-vector energy systems. Identification of: (i) synergistic benefits with electrical
			and thermal energy storage; and (ii) energy system value of green hydrogen.
3	Fanourios Kourougianni	Thermodynamics, Energy in Buildings	Designing and modelling green hydrogen energy subsystems, encompassing the three
			key phases of generation, storage, and utilization. Moreover, the integration of these
			subsystems to create hydrogen-based multi-energy systems
4	Georgios Yiasoumas	Electrical/Power Engineering, Energy Communities	Applications of hydrogen in an energy community context
5	Dr Giorgos Makrides	Renewable energy source power systems (focal	Green hydrogen as a form of storage for the electricity network and coupling with
		point photovoltaics), Grid integration of variable	other forms of storage such as batteries etc
		renewable sources, Smart grids, Machine learning	
		and data-driven analytics	
6	Prof. George Georghiou	Renewables and in particular photovoltaics, Grid	Green hydrogen as a form of storage for the electricity network and coupling with
	(CEO of Phaethon CoE)	integration of RES, Electromagnetic Fields and Novel	other forms of storage such as batteries etc
		Applications, Plasma at atmospheric pressure,	
		Multiphysics Modelling	
7	Dr Charalambos	Fluid flow and fracturing of porous media, microbial	Geological hydrogen storage in depleted reservoirs, salt caverns, enhanced natural
	Konstantinou	processes in soils/rocks, reservoir and water systems	gas/oil production with hydrogen injection and storage (piston-like injection), policy
		engineering, data inference and machine learning	schemes
8	Prof. Panos	Applied and Computational Mechanics, natural gas	Hydrogen underground storage, Energy Project Economics and Finance
	Papanastasiou	exploration, production and monetization	

*member of Phaethon that will work on Social, Economics, Environment, Policy are not included in the list

Green Hydrogen

Modeling & optimization of novel energy systems based on various technologies

- Solar Photovoltaics
- Electrolyzers
 - Proton Exchange Membrane Electrolyzers
- Hydrogen Storage
 - Compressed
 - Metal Hydride
- Fuel cells
 - Proton Exchange Membrane Fuel Cells
 - Solid Oxide Fuel Cells
- Integration with heat engines
 - Gas turbines
 - Steam turbines
- Integration with refrigeration engines
 - Heat pumps
 - Absorption chillers

- Applications
 - Residential & Commercial Buildings
 - Power plants
 - Decentralized, Microgrids (both autonomous & grid-connected)
 - Combined-Heat-and-Power, Combined-Cooling-Heating-and-Power, Cogeneration

Green Hydrogen

Experimental work

- Existing green hydrogen equipment
 - 100 W PEM fuel cell stack
 - Metal hydride hydrogen storage sticks (10 L x10)
 - Hydrogen generator PEM electrolyzer
 - Auxiliary components (AC/DC converter, controllable loads)

Green Hydrogen

Underground Storage

- Storage will be crucial for developing the hydrogen economy at scale and to increase integration of renewables in energy systems
- Underground hydrogen storage extends capabilities to time scales of seasonal and strategic storage and comes at lower cost
- Technologies exist for underground storage of natural gas, CO2 geological storage
- Unknown issues related to hydrogen permeability, sealing, injectivity capacity, deliverability, chemical reactions, biological processes, contamination
- Working to identify proper rock formations
 - Underground Cavities
 - Natural existing Cavities
 - Created cavities in salt formations by drilling and washing out the brine (disposed in the sea)
 - Porous formation
 - in depleted reservoirs or with EGR, depleted aquifers
- Screening tools based on Material Mass balance Equation

Transition to Excellence

Thank you! Prof Panos Papanastasiou

panospap@ucy.ac.cy

Paving the way for sustainability and always serving the society!

