

OCC-DVC: Fielded Grid Performance

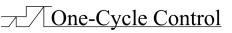
Intro to OCC + OCC-Dynamic VAR Compensator (OCC-DVC)

Gregory T. Smedley, Ph.D. CEO/President

IENE Workshop - Electricity Storage and Grid Management for Maximum RES Penetration

Sept 28, 2022

Intro to OCC, Inc.


CALTECH

OCC HQ, Irvine, CA

Hi-Tech Power Electronics Company Challenger in the Market Adaptable

OCC Design, Quality, & Manufacturing

Design:

UL Safety

Green Design: maximize kVA/m³ & kVA/kg

MIL-STD Environmental, Safety, Human Factors

60 kVA ~0.034 m³ ~30 kg

Quality:

ISO9001:2015 Certified (since 2017)

MIL-STD 1686C [ESD]

J-STD 001 [Soldering]

Manufacturing:

Toyota Production System (Visual, KanBan, Material)

Modular / Scalable [Existing Capacity > 200 MW / yr]

Build to Order / One-Piece Flow

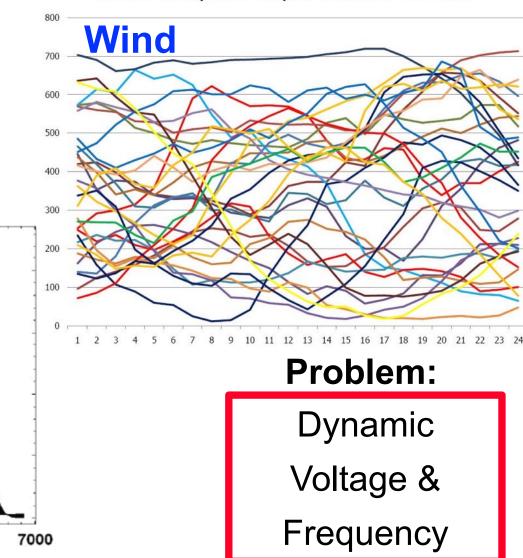
The Present Grid Big Passive Dynamically Stressed

Solar

1000

2000

3000


Seconds

4000

Real Power Output (kW)
0000
0000
0000

Dynamic Sources

Springerville AZ, One Day at 10 Second Resolution

IF (Island Grid) THEN (less inertia & more dynamic)

6000

5000

Connecting Island to Mainland can help ==> Expensive

VAR & Voltage Regulation Methods

Transmission level

- Synch Condenser
- Switched Cap
- LTC

Distribution level & Low Voltage level

- Switched Cap
- SVC
- STATCON
- OCC-DVC
- LTC

Comparison

	VAR type	Adjustment	Switch transient	Harmonic Effects	Dynamic speed	VAR amount	Peak reactive current	Harmonic effect	Cost
Synchronous Condenser	- &+	Continuous	No	No	Slowest	αV	Constant	None	Higher
Switched CAP Bank	+ only	Step	Yes	Yes	Slow	∝ V ²	∝ V	Voltage distortion	Low
SVC	- &+	Continuous	Yes	Yes	Fast	∝ V ²	∝ V	Voltage distortion	High
STATCOM	- &+	Continuous	No	No	Faster	αV	Constant	None	Higher
OCC-DVC	- &+	Continuous	No	No	Ultra fast	∝ V	Constant	None	Higher
LTC	N/A	Step	Yes	No	Slow	N/A	N/A	N/A	Not comparable

Synch Condenser: high inertia not suitable for fast transients

LTC & Switched Cap: slow speed and discrete step control

SVC: too slow to mitigate fast renewable transients

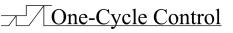
STATCON: may be adequate if mild transient

OCC-DVC: demonstrated fast transient suppression

Opportunity:

OCC-DVC coordination with LTC, Switched Cap, and SVC

smooth and cost-effective solutions


Future Grid Distributed Active Autonomous "Reflexes"

Enabled by OCC Power Electronics

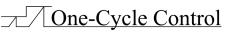
OCC-DVC

[Autonomous "Reflex"]

Stabilize Voltage Increase Renewables Boost Grid Resilience

Grid Challenges

Lagging Infrastructure updates


- Low Efficiency
- Limited Operating Margin
- Network Overload

Increased Renewable Generation

- Intermittent Supply / Demand
- Voltage Instability / Flicker
- Frequent Switching of Load Tap Changers and Switched Cap Banks

Grid Resilience

- Grid Sabotage (Physical & Cyber Attack)
- Sudden Load Drop
- Cascading Blackouts & Economic Loss

Grid Solution: OCC-DVC

Increase Efficiency & Capacity

- Conservation Voltage Reduction (CVR)
- Volt / VAR Optimization (VVO)
- Increase Network Operating Margin

Enable High-Penetration Renewable Generation

- Establish & Control Desired Voltage Profiles
- Stabilize Fast Dynamic Voltage
- Reduce Switching of Load Tap Changers and Switched Cap Banks

Boost Grid Resilience

- Stabilize Grid Against Sabotage
- Stabilize Grid Against Sudden Load Drop
- Limit or Prevent Cascading Blackouts & Economic Loss

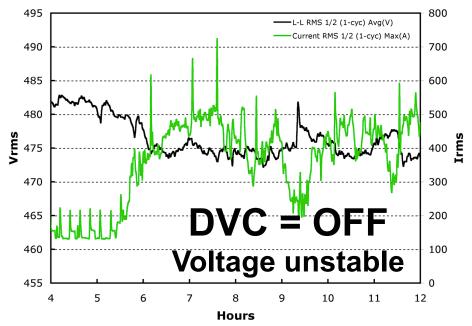
OCC-DVC: Field Demos

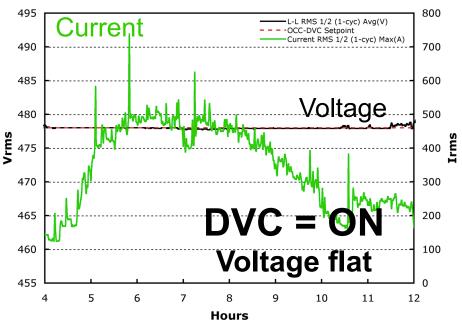
One-Cycle Control

DOE SuNLaMP Project (2016 - 2019) Sub-Transmission Stabilization

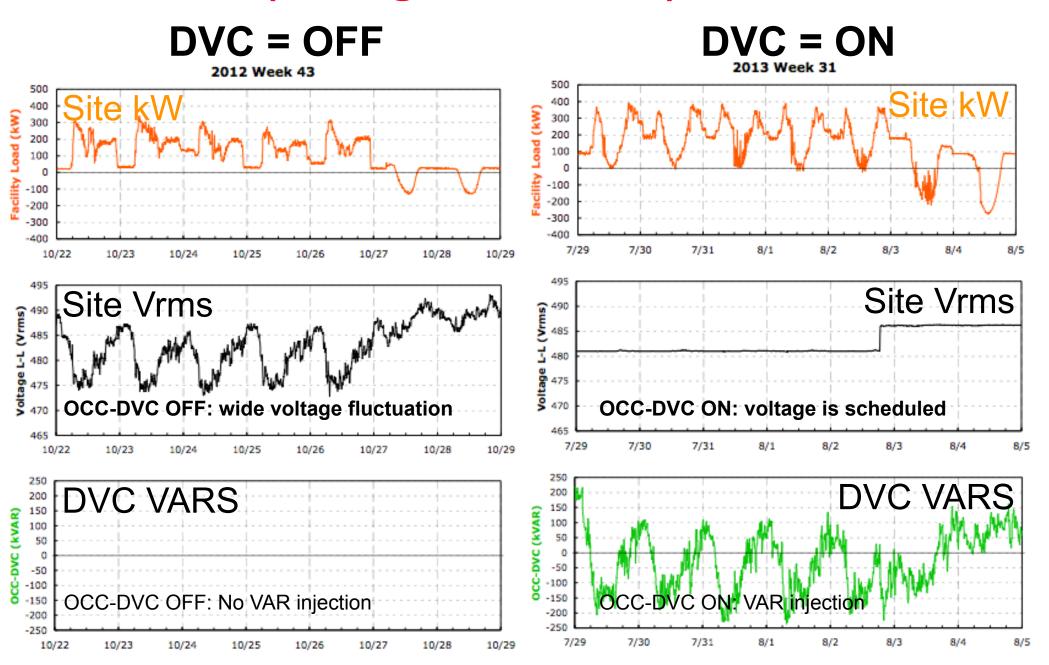
Model/Manage/Control Distribution-Circuit VAR equipment to stabilize sub-transmission circuits and enable high-penetration Renewables

http://energy.gov/eere/sunshot/project-profile-enabling-high-penetration-distributed-photovoltaics-through


OCC-DVC: SDGE Install (Jan 2013)

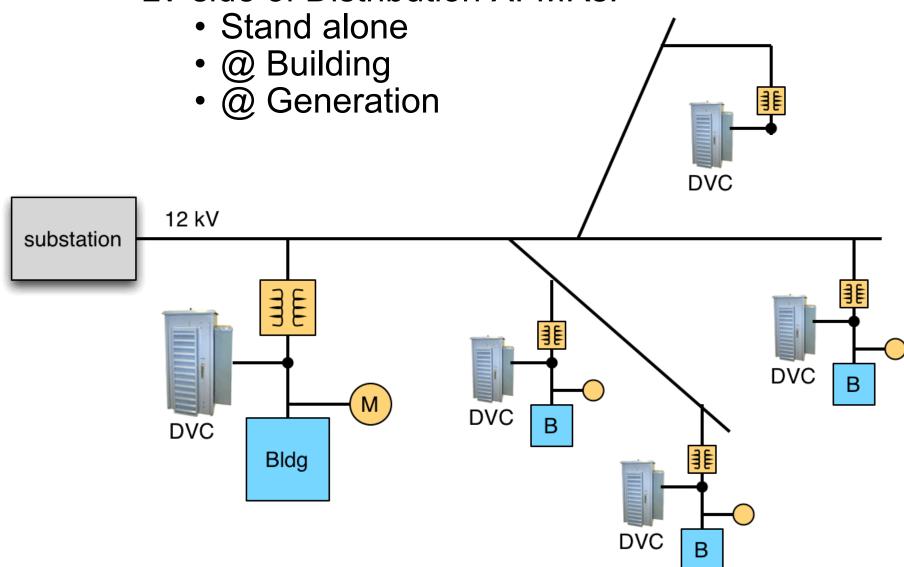


- Remote Setpoint Control
- Distributed, Small, Fast, Precise "Reflexes"
- Low V ride-thru
- **Field Proven**
- **Utility Scale**



OCC-DVC (Voltage Schedule)

2022 © One-Cycle Control, Inc.


500kV Line Fault ==> October 18, 2013 @ 9:03 am

- Voltage sag was detected in every SDG&E substation
- except the one with OCC-DVC = ON

Where to Install?

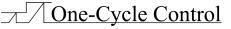
LV side of Distribution XFMRs:

How to Service?

- Rack Mount Modules
- Blind Mate
- Hot Swap
- Remove / Replace ~ 5 min
- Stock Spares Locally
- Ship Modules for Repair

OCC-DVC Benefits

Fast Dynamic Grid Voltage Stabilization


- Increase renewables (+/- kVARs)
- Boost Resilience Limit/Quench cascading blackouts
- Improve system capacity/efficiency (VVO/CVR)

Modular ==> Flexibility with Low OPEX Cost

- 1-Person In-Field Module Replacement ~ 5 min
- Ship for Repair; Stock Spares
- Relocate modules as Grid configuration changes
- Scalable: +/- 60 to +/- 360 kVAR (per cabinet)

Hardware-Enabled ==> Cyber Secure

- Hardware Limits on Set-Point Range
- Autonomous Operation

Greg Smedley CEO / President

address: 18001 Mitchell S, Irvine, CA, 92614

phone: +1 (949) 727-0107 x01

email: sales@onecyclecontrol.com