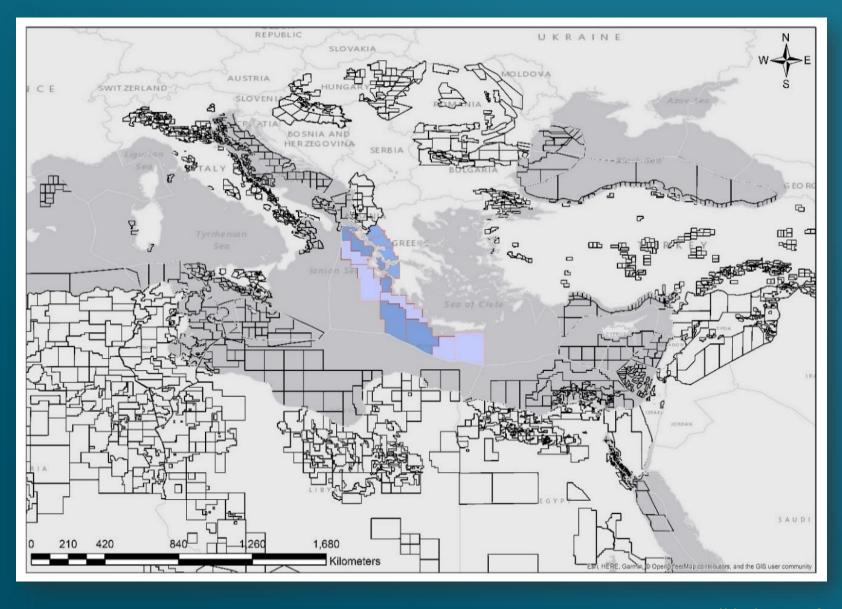
"Workshop Prospects for the Implementation of CCUS Technologies in Greece and SE Europe"

Identification and assessment of suitable geological underground formations in lignite and nearby areas in Greece for CCUS application


Once upon a time

we had a hope to produce gas and oil and deal with the associated CO2

in four ways

to inject,
to store
to recycle
to export

.... still believe it?

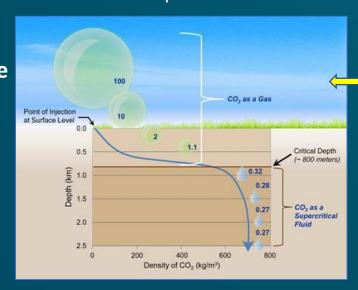
Workflow of geological storage

Principals

Mechanisms of underground storage

Mechanisms of trapping

Types of storage

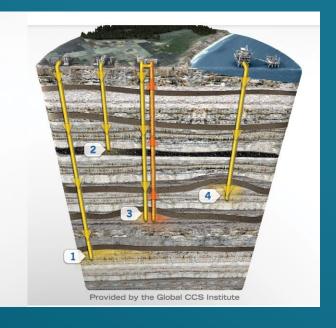

Rock properties required

Pressure and temperature conditions required

Selection criteria for a subsurface storage complex

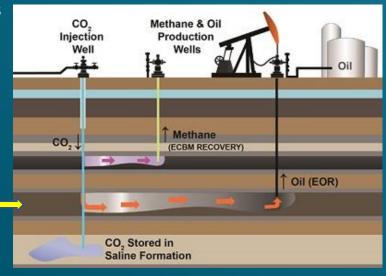
underground geological structure, the faults, and folds stratigraphy, of the storage reservoir, of the caprock to identify possible *leakage* paths in the overlying layers shallow formations associated with aquifers

Acceptability of a site
Storage Resource
Injectivity
Integrity
Depth



1 Saline formations

2 Injection into deep unmineable coal seams or ECBM


3 Use of CO₂ in enhanced oil recovery

4 Depleted oil and gas reservoirs

The **Pressure Effect** on CO2 is a decision maker for the geological storage. The blue numbers show the volume of CO2 at each depth compared to a volume of 100% at the surface

EOR recovery process by which CO₂ is injected and used to drive the natural gas or oil towards a recovery well

It takes time

Selection criteria for a subsurface storage complex: 2 and 5 years

Assessment report: Follows the international and European legislation on the CO2 geological storage

Operational phase: 10 and 50 years, includes the construction, preparation and injection

Final storage report : Once the geological model has been confirmed, the behavior of the storage complex understood, and there is no significant risk of CO2 leakage, *the site can be sealed*

Certification: A certificate should be issued by the competent authority *confirming* that the stored CO2 *will be safely held for hundreds of years*

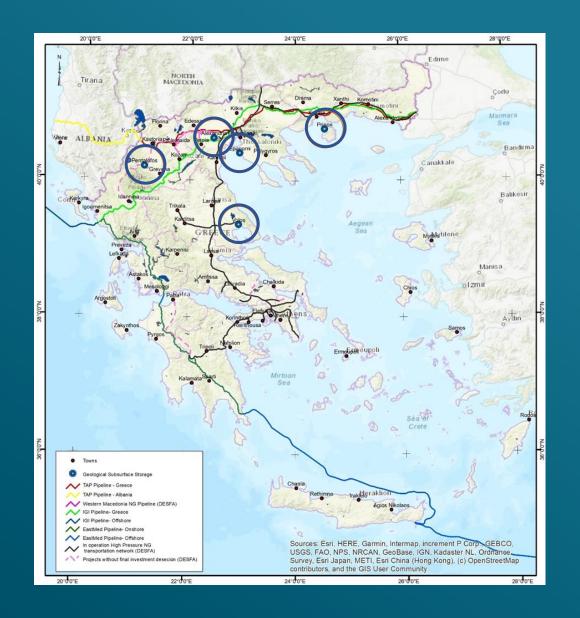
The initial idea was ... to contribute significantly to the economy of Western Macedonia with CO2 subsurface storage

Provided that:

- the lignite was not phasing-out too fast
- other products would be produced before and after the lignite combustion
- production of oil and gas was to develop fast in Greece

But:

- the depth of the unmineable lignite sites in Ptolemais and Kozani are quite shallow to guarantee the supercritical conditions of CO2 storage
- there was *no recognition* of the conclusions of the Academy of Science to produce **other products**
- the low volumes and the high transportation cost were critical since the CO2 emissions account for only 60 Mt, while 10 Mt is probably already captured by the refining industry through the various chemical process lines.


Then we turned to other areas

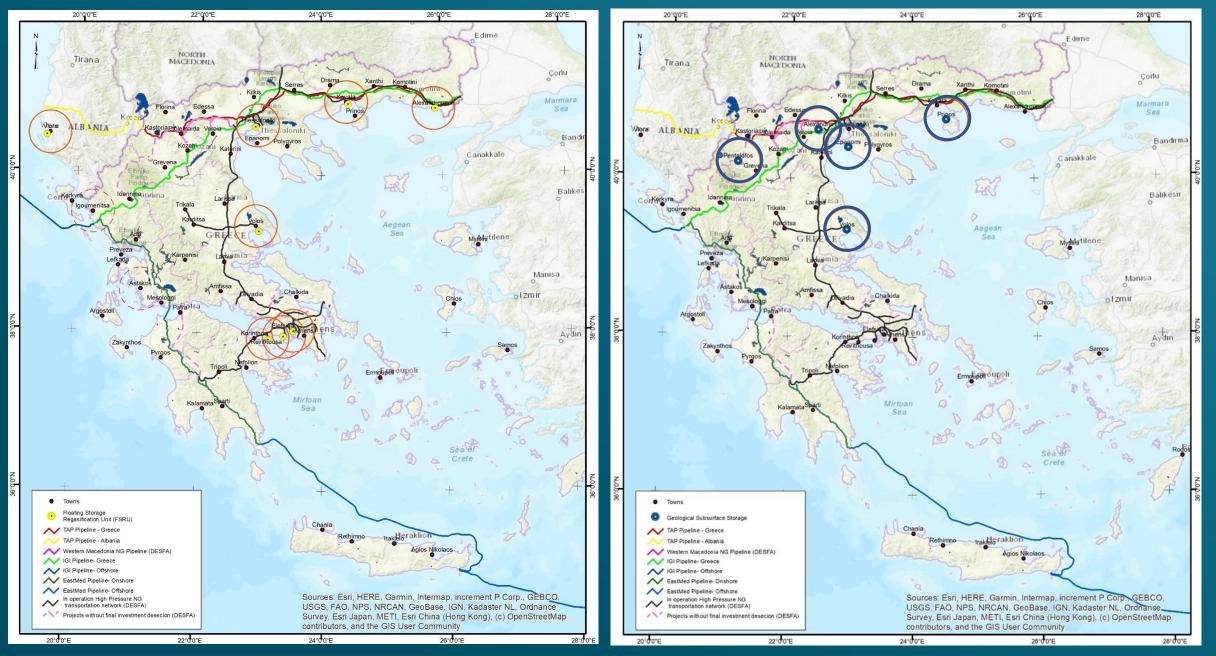
The Mesohellenic Trough in <u>Western Macedonia</u> with storage plays at shallow depths and possible gas reservoirs at deeper parts of the trough

The West Thessaloniki large basin and the Epanomi field in <u>Central Macedonia</u> with geothermal wells and known discoveries of gas and CO2 fields respectively

Prinos and S. Kavala in <u>Eastern Macedonia</u> with a series of partially depleted oil and gas reservoirs

Florina in <u>Western Macedonia</u>, should serve as a useful case of CO2 natural leakage to the surface

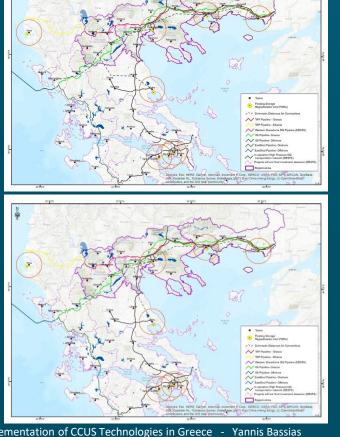
Capacity of CO2 storage by location in Greece


Acceptability criteria	MESSOHELLENIC TROUGH	WEST THESSALONIKI	EPANOMI	SOUTH KAVALA	PRINOS
Storage resource	216-1435 (Mt)	640 (Mt)	2 (Mt)	35 (Mt)	
Injectivity	Good 15 % porosity	Low porosity Low permeability	Low porosity to tight		
Integrity	2 confining zones at depth	1200	1600		
Depth	2500	900-2400	2600	1600	1600

More than 10 years 10 years of Greek emissions

5 years of Greek emissions

GAS PIPES, PORTS, AND PLANNED FSRU FACILITIES


UNDERGROUND STORAGE LOCATIONS

Grevena

Thessaloniki

Epanomi

Distance from port facilities (km)			Distance from industrial facilities (km)			
Grevena	Alexandroupolis	415	Grevena	Komotini power station	365	
	Kavala	280		Prinos	300	
	Volos	165		Volos National Gas Grid	165	
	Thessaloniki	145		TAP close to Ptolemaida	65	
	Igoumenitsa	125		Ptolemaida	60	
				IGI close to Kozani	40	
Thessaloniki	Igoumenitsa	275	Thessaloniki	Komotini power station	225	
	Alexandroupolis	270		Volos National Gas Grid	180	
	Volos	180		Prinos	160	
	Kavala	135	messalomki	Ptolemaida	130	
				TAP close to Nea Magnisia	20	
				IGI close to Nea Magnisia	20	
Epanomi	Igoumenitsa	310		Komotini power station	250	
	Alexandroupolis	295	Epanomi	Prinos	220	
	Volos	220		TAP close to Nea Magnisia	180	
	Kavala	160		IGI close to Nea Magnisia	165	
				Ptolemaida	55	
				Volos National Gas Grid	55	

SOME FACTS

Fact 1: The annual CO2 release in Greece was 115 Mt in 2007 while in 2020 it was 60 Mt

Fact 2: In 2019 the industry released 40.4 Mt

- 26 from lignite for electricity
- 5.4 from hydrocarbons
- 5.3 from cement factories
- 2.1 from metallurgy
- 1.6 from others uses

Fact 3 : Some industrial facilities do not need to store all emitted CO2 because they convert part of it into other polymers and products with higher economic value (e.g. plastics, concrete, biofuels) while reducing the carbon tax.

Fact 4: Investment scenarios must play between 10 and 40 years

Cost of CO2 storage

The cost of CO2 storage after initial studies, seismic and drilling, according to IEAGHG varies around 14.3 euros per ton. The main are:

- Injection 3 euros
- pre-feed 6 euros
- operating cost 2.5 euros
- close down of the storage site 1 euro
- (transport scenarios, pipe, track or vessel are not included)
- Annual CO2 emissions in Greece : 2020 60 million tons

2007 115 million tons

- Estimated 60 Mt emissions in Greece represent 858 million euros (60 Mt * 14.3 million euros)
- Tax on carbon represents 6 billion euros, a multiple of 7.
- Transport cost is unknown and not included

Overview of existing and planned CO2 storage projects in Europe

and Europe?

BULGARIA

1. ANRAV (IF)

CROATIA

- 1. Petrokemija Kutina*
- 2. Bio-Refinery Project*
- 3. CCGeo (IF)
- 4. CO₂ EOR Project Croatia*

DENMARK

- 1. Greensand*
- 2. Bifrost*
- 3. Stenlille demo CO2-storage
- 4. Norne
- 5. Ruby

FRANCE

1. Pycasso*

GREECE

1. Prinos CCS

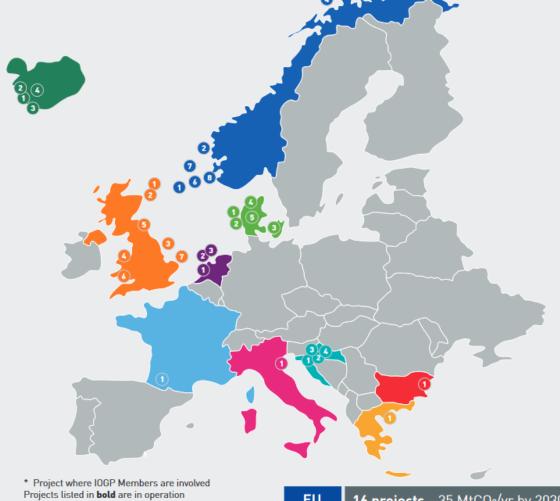
ICELAND

- 1. Orca
- 2. Silverstone (IF)
- 3. Coda Terminal (IF)
- 4. Mammoth

ITALY

1. Ravenna CCS*

THE NETHERLANDS


- 1. Porthos* (PCI)
- 2. Aramis* (PCI)
- 3. L10 CCS*

NORWAY

- 1. Sleipner*
- 2. Longship (includes Northern Lights)* (PCI)
- 3. Barents Blue
- 4. Snøhvit*
- 5. Smeaheia*
- 6. Trudvang*
- 7. Luna*
- 8. Havstjerne*

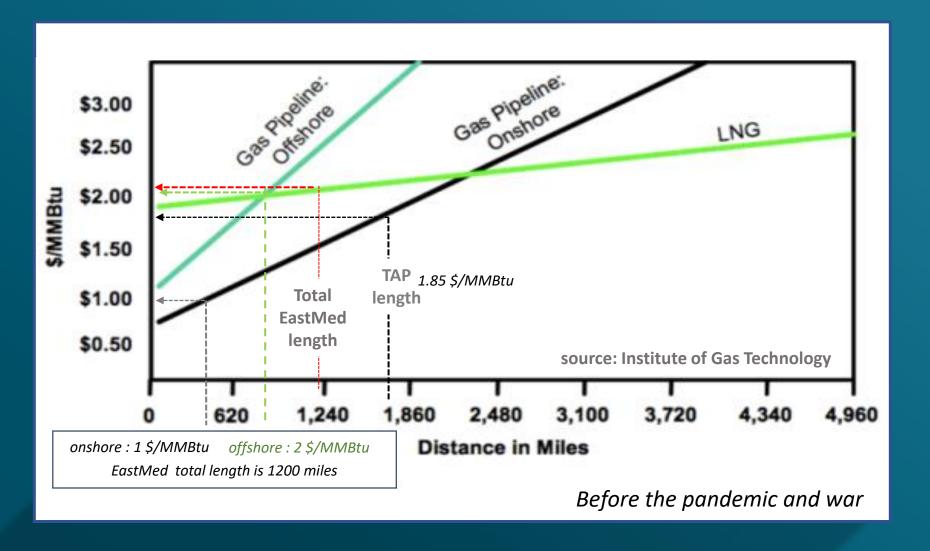
UK

- 1. Acorn*
- 2. Caledonia Clean Energy
- 3. Zero Carbon Humber*
- 4. HyNet*
- 5. Net Zero Teesside*
- 6. South Wales Industrial Cluster
- 7. Bacton Thames Net Zero initiative*

(PCI) - Project of Common Interest (IF) - Project supported by the EU Innovation Fund EU

16 projects - 35 MtCO₂/yr by 2030

Europe


35 projects - 105 MtCO₂/yr by 2030

Combined with

oil production

Gas transport economics are known Not of CO2 and H2

It will be difficult to figure out which side these correlations will tilt with CO2 or H2 transportation cost after some years of practical experience

CONCLUSIONS

It seems that benefits for Macedonia can come if there is a combination of three projects

- 1. presence of methane and its possible exploitation
- 2. underground storage geometries to store thermogenic gases
- 3. creation of a commercial transit pole to the Balkans and Italy