## **Global and Regional Energy Challenges**

#### Joint ROEC/IENE Event in Bucharest

EC Representation in Bucharest October 16, 2019

A Presentation by **Mr. Costis Stambolis** Chairman and Executive Director, IENE

INSTITUTE OF ENERGY FOR SOUTH EAST EUROPE





## The Evolution of the Global Energy Mix (1990 and 2017)



Sources: Edmond de Rothschild Financial Group, IEA



## Global Energy Consumption (1993-2018)



Global energy consumption increased by 2.9% in 2018. Growth was the strongest since 2010 and almost double the 10-year average. The demand for all fuels increased but growth was particularly strong in the case of gas (168 mtoe, accounting for 43% of the global increase) and renewables (71 mtoe, 18% of the global increase). In the OECD, energy demand increased by 82 mtoe on the back of strong gas demand growth (70 mtoe). In the non-OECD, energy demand growth (308 mtoe) was more evenly distributed with gas (98 mtoe), coal (85 mtoe) and oil (47 mtoe) accounting for most of the growth.

#### Source: BP Statistical Review of World Energy 2019



### Primary Energy Consumption by Fuel and CO<sub>2</sub> Emissions



\*Renewables includes wind, solar, geothermal, biomass, and biofuels. For full list of data definitions see p138

Source: BP Energy Outlook 2019



## **Primary Energy Demand and Carbon Emissions**

#### Primary energy demand and carbon emissions

Cumulative growth rate, 2017 = 0%





#### World Primary Energy Demand by Fuel and Scenario (Mtoe)

|                                |        |        | New Policies |        | Current | Policies | Sustainable<br>Development |        |  |
|--------------------------------|--------|--------|--------------|--------|---------|----------|----------------------------|--------|--|
|                                | 2000   | 2017   | 2025         | 2040   | 2025    | 2040     | 2025                       | 2040   |  |
| Coal                           | 2 308  | 3 750  | 3 768        | 3 809  | 3 998   | 4 769    | 3 045                      | 1 597  |  |
| Oil                            | 3 665  | 4 435  | 4 754        | 4 894  | 4 902   | 5 570    | 4 334                      | 3 156  |  |
| Gas                            | 2 071  | 3 107  | 3 539        | 4 436  | 3 616   | 4 804    | 3 454                      | 3 433  |  |
| Nuclear                        | 675    | 688    | 805          | 971    | 803     | 951      | 861                        | 1 293  |  |
| Renewables                     | 662    | 1 334  | 1 855        | 3 014  | 1 798   | 2 642    | 2 056                      | 4 159  |  |
| Hydro                          | 225    | 353    | 415          | 531    | 413     | 514      | 431                        | 601    |  |
| Modern bioenergy               | 377    | 727    | 924          | 1 260  | 906     | 1 181    | 976                        | 1 427  |  |
| Other                          | 60     | 254    | 516          | 1 223  | 479     | 948      | 648                        | 2 132  |  |
| Solid biomass                  | 646    | 658    | 666          | 591    | 666     | 591      | 396                        | 77     |  |
| Total                          | 10 027 | 13 972 | 15 388       | 17 715 | 15 782  | 19 328   | 14 146                     | 13 715 |  |
| Fossil fuel share              | 80%    | 81%    | 78%          | 74%    | 79%     | 78%      | 77%                        | 60%    |  |
| CO <sub>2</sub> emissions (Gt) | 23.1   | 32.6   | 33.9         | 35.9   | 35.5    | 42.5     | 29.5                       | 17.6   |  |

Notes: Mtoe = million tonnes of oil equivalent; Gt = gigatonnes. Solid biomass includes its traditional use in three-stone fires and in improved cookstoves.



## Global Oil Demand (2018-2020)

|                               |               |      | Glo  | bal O         | il Der | nand          | (2018 <sup>-</sup> | -2020) |               |       |               |               |       |               |       |
|-------------------------------|---------------|------|------|---------------|--------|---------------|--------------------|--------|---------------|-------|---------------|---------------|-------|---------------|-------|
| (million barrels per day)*    |               |      |      |               |        |               |                    |        |               |       |               |               |       |               |       |
|                               | 1 <b>Q</b> 18 | 2Q18 | 3Q18 | 4 <b>Q</b> 18 | 2018   | 1 <b>Q</b> 19 | 2Q19               | 3Q19   | 4 <b>Q</b> 19 | 2019  | 1 <b>Q</b> 20 | 2 <b>Q</b> 20 | 3Q20  | 4 <b>Q</b> 20 | 2020  |
| Africa                        | 4.3           | 4.3  | 4.2  | 4.3           | 4.3    | 4.4           | 4.4                | 4.2    | 4.4           | 4.4   | 4.5           | 4.4           | 4.3   | 4.4           | 4.4   |
| Americas                      | 31.6          | 31.7 | 32.3 | 32.1          | 31.9   | 31.4          | 31.9               | 32.6   | 32.3          | 32.1  | 31.6          | 32.5          | 33.1  | 32.7          | 32.5  |
| Asia/Pacific                  | 35.0          | 34.7 | 34.3 | 35.1          | 34.8   | 35.4          | 35.2               | 35.2   | 36.1          | 35.4  | 36.0          | 35.9          | 35.9  | 37.0          | 36.2  |
| Europe                        | 14.8          | 15.0 | 15.5 | 14.9          | 15.1   | 14.7          | 15.2               | 15.6   | 15.1          | 15.2  | 14.7          | 15.3          | 15.7  | 15.2          | 15.2  |
| FSU                           | 4.5           | 4.6  | 4.9  | 4.8           | 4.7    | 4.7           | 4.8                | 5.0    | 5.0           | 4.9   | 4.8           | 4.8           | 5.1   | 5.0           | 4.9   |
| Middle East                   | 8.2           | 8.5  | 8.8  | 8.2           | 8.4    | 8.2           | 8.6                | 8.9    | 8.3           | 8.5   | 8.2           | 8.6           | 8.9   | 8.3           | 8.5   |
| World                         | 98.5          | 98.8 | 99.9 | 99.4          | 99.2   | 98.7          | 100.0              | 101.4  | 101.2         | 100.3 | 99.8          | 101.6         | 102.9 | 102.7         | 101.7 |
| Annual Chg (%)                | 2.0           | 0.7  | 1.5  | 0.7           | 1.2    | 0.3           | 1.2                | 1.5    | 1.8           | 1.2   | 1.1           | 1.5           | 1.5   | 1.5           | 1.4   |
| Annual Chg (mb/d)             | 1.9           | 0.7  | 1.5  | 0.7           | 1.2    | 0.2           | 1.2                | 1.5    | 1.8           | 1.2   | 1.1           | 1.5           | 1.5   | 1.5           | 1.4   |
| Changes from last $OMR(mb/d)$ | 0.0           | 0.0  | 0.0  | 0.0           | 0.0    | -0.4          | -0.3               | 0.2    | 0.1           | -0.1  |               |               |       |               |       |

\* Including biofuels



Source: IEA Oil Market Report, June 14, 2019



## The Global Energy Transition Framework



## The Future of Oil Companies and Stranded Assets



#### The SE European Region Defined





- Italy
- Lebanon
- SyriaUkraine



## Key Regional Energy Issues

- Marked divergence between EU and SEE energy strategies
- **SEE** is more energy security vulnerable than the rest of Europe
- Energy supply diversification in SE Europe is less important than security of energy transportation and transmission (oil, gas and electricity)
- **SEE's high hydrocarbon dependence**
- Electricity's newcomer gas alters supply balance
- Lack of adequate electricity and gas interconnections
- Coal is and will continue for sometime to be relevant
- **SEE's** path towards decarbonisation is difficult and uncertain
- Nuclear remains a viable option for SEE power generation
- RES growth impeded due to policy failures, financial and regulatory framework and electricity grid constraints
- Energy poverty is emerging as a regional concern mainly related to deteriorating social conditions



## Key Regional Energy Issues – Energy Import Dependency

Energy Import Dependency (%) in SE Europe (2016)



Sources: Eurostat, IENE



## Key Regional Energy Issues – Oil Import Dependency

120% 100% 80% 60% 40% 20% 0% Albania Bulleria Croate ENROW Greece Noneneero Romania Serbia Sovenia Turkey

Oil Import Dependency (%) in SE Europe (2016)

**Note**: A dependency rate in excess of 100% relates to the build-up of stocks. Eurostat provides no data for Bosnia and Herzegovina and Kosovo.

Sources: Eurostat, IENE



## Key Regional Energy Issues – Gas Import Dependency

Gas Import Dependency (%) in SE Europe (2016)



Note: Albania, Cyprus, Montenegro and Kosovo do not import natural gas.

Sources: Eurostat, IENE



#### Production and Imports of Lignite and Hard Coal in Europe (2017)



Source: EURACOAL



#### Electricity Share From Coal in the Generation Fuel Mix of the Western Balkans





## Estimation of Full Costs of Current Electricity Production from Coal in the Western Balkans





# Incentives for Electricity Production from Renewables and Coal Subsidies in End-user Prices in the Western Balkans (2017)





#### Price of CO<sub>2</sub> European Emission Allowances (€ per tonne)





## EU Energy Policy Framework (by 2020, 2030 and 2050)

#### Key EU targets for 2020:

20% reduction in EU greenhouse gas emissions compared with 199020% of total energy consumption to come from renewable energy sources20% increase in energy efficiency





# EU Energy Policy Framework: How Does This Stand for SE Europe?

- It seems that an inverted pyramid arrangement has been developed in SE Europe, compared to pursued official Energy Union policies and stated targets as economic development at all costs remains number one priority for most countries.
- The energy policy priorities in broad terms for SEE would appear as follows:
  - Further large-scale development of coal and lignite resources without any real recourse CCS/CSU provisions and plans
  - Further development of electricity and gas interconnections in order to maximise cross border trade
  - Promotion of oil and gas exploration activities (onshore and offshore) aiming towards maximizing production in the mid- and long-term
  - Further development of renewables in all application areas (i.e. solar, wind, biomass, hydro and geothermal) without necessarily aiming to adhere to specific targets (set by the EU)
  - Promotion of energy efficiency, focusing primarily on the building sector, incentivized by EU and green fund financing facilities
  - **Diversification** of supply routes and suppliers in order to secure future gas supplies
  - Reduction of CO<sub>2</sub> emission levels (least of priorities)



## Under Construction and Planned Coal Plants in SEE Countries (MW)\*, as of January 2019

| Country              | Announced<br>New Plants | Pre-<br>permit | Permitted | Announced<br>+ Pre-permit<br>+ Permitted | Under<br>Construction | Shelved | Operating | Cancelled<br>(2010-2018) |  |
|----------------------|-------------------------|----------------|-----------|------------------------------------------|-----------------------|---------|-----------|--------------------------|--|
| Turkey               | 12,8                    | 17,311         | 6,555     | 36,666                                   | 800                   | 24,554  | 18,826    | 41,031                   |  |
| Bosnia & Herzegovina | 2,38                    | 0              | 1,7       | 4,08                                     | 0                     | 0       | 2,073     | 1,02                     |  |
| Serbia               | 1                       | 0              | 350       | 1,35                                     | 0                     | 0       | 4,405     | 1,82                     |  |
| Romania              | 0                       | 600            | 0         | 600                                      | 0                     | 0       | 5,305     | 5,105                    |  |
| Kosovo               | 0                       | 450            | 0         | 450                                      | 0                     | 0       | 1,29      | 330                      |  |
| Greece               | 0                       | 450            | 0         | 450                                      | 660                   | 0       | 4,375     | 800                      |  |
| North Macedonia      | 300                     | 129            | 0         | 429                                      | 0                     | 0       | 800       | 300                      |  |
| Montenegro           | 0                       | 0              | 0         | 0                                        | 0                     | 0       | 225       | 1,41                     |  |
| Bulgaria             | 0                       | 0              | 0         | 0                                        | 0                     | 0       | 4,889     | 2,66                     |  |
| Slovenia             | 0                       | 0              | 0         | 0                                        | 0                     | 0       | 1,069     | 0                        |  |
| Croatia              | 0                       | 0              | 0         | 0                                        | 0                     | 0       | 210       | 1,3                      |  |
| Albania              | 0                       | 0              | 0         | 0                                        | 0                     | 0       | 0         | 800                      |  |

\*Note: Includes units 30 MW and larger



### **Technical RES Potential in SE Europe**

Due to its magnitude, the potential for Ukraine is shown in the secondary axis).





24

### Total Anticipated Energy Investments in Greece (2018-2027)

| Sector - Fuel                   | Activities                                                | Total Anticipated<br>Energy Investments,<br>in €million |  |  |
|---------------------------------|-----------------------------------------------------------|---------------------------------------------------------|--|--|
| 0.1                             | Exploration and Production (E&P)<br>activities (Upstream) | 5,000                                                   |  |  |
| Oil                             | Refining and marketing activities<br>(Downstream)         | 2,000                                                   |  |  |
| Gas                             | Gas network                                               | 3,300                                                   |  |  |
|                                 | Electricity generation<br>(new power plants)              | 3,000                                                   |  |  |
| Electricity                     | Electricity grid                                          | 5,600                                                   |  |  |
|                                 | RES                                                       | 15,100                                                  |  |  |
| Energy Efficiency               | Energy efficiency                                         | 11,000                                                  |  |  |
| <b>Research and Development</b> | Research and Development                                  | 500                                                     |  |  |
|                                 | Total Anticipated Energy Investments by 2027              | 45,500                                                  |  |  |

**Note:** Include gas pipelines of TAP, IGB and IGI Poseidon. Do not include East Med gas pipeline. They also include central autoproducer units, PV installations in the roofs and electricity storage systems.



#### Total Anticipated Energy Investments in Romania (2016-2025)

|                  | Project Sector                   | Description                                                                                                                                                                    | Investment Estimate<br>in Million Euros |
|------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
|                  | Upstream                         | <ul> <li>Field Exploration and development of new or<br/>and gas wells</li> </ul>                                                                                              | oil 6,500 (e)                           |
| OIL              | Downstream                       | • Refining<br>• Loading Terminals<br>• Storage facilities<br>• Crude / Gas Pipeline(s)                                                                                         | 1,500<br>250 (e)<br>120<br>80           |
| GAS              | Country Gas Network              | • Grid development<br>• Main intra country pipeline(s)<br>• Storage facilities<br>• FSRU Terminal                                                                              | 150<br>230<br>85<br>150                 |
|                  | Power Generation<br>(new plants) | <ul> <li>Lignite</li> <li>Coal</li> <li>Gas</li> <li>Nuclear</li> <li>Large Hydro</li> </ul>                                                                                   | 525<br>-<br>210<br>6,500<br>1,150       |
| ELECT-<br>RICITY | Electricity Grid                 | • New H/V transmission lines<br>• Upgrading and expansion of existing grid                                                                                                     | 860 (e)<br>500                          |
|                  | RES                              | <ul> <li>Small Hydro</li> <li>Wind farms</li> <li>Photovoltaics</li> <li>Concentrating Solar Power</li> <li>Biomass (including liquid biofuels)</li> <li>Geothermal</li> </ul> | 750 (e)<br>640<br>150<br>-<br>280<br>-  |

Total Anticipated investments by 2025

20,630

25



## Conclusion (I)

- In addition to market integration and market liberalization requirements, COP 21 targets and commitments are now complicating further the energy issues in SE Europe. EU member countries in the region (i.e. Bulgaria, Croatia, Cyprus, Greece, Romania and Slovenia) have no great difficulty in abiding to EU Directives and targets, in comparison with the Western Balkans.
- The transition to decarbonized power generation is not an easy regional issue, as in most of the SEE countries electricity generation, which is mainly based on coal and lignite, supports thousands of jobs while it forms the basis of an extensive industrial base.
- Although all countries in the region to a larger or to a smaller extent are committed to gas, RES and energy efficiency programmes and specific targets, at the same time, they are pursuing a parallel carbonization agenda as we have a number of coal-fired power plants under construction or at an advanced planning stage. In short, carbon-based power generation is also moving ahead, adding substantial capacity from now until 2025 (1.5 GW per year for SEE and 2.5 GW for Turkey, i.e. total 4 GW per year over the next 7-8 years).
- While new RES capacity over the last three-year period is less than 500 MW per year of installed capacity and approximately 1.5 GW, including Turkey. As a result, a substantial gap is foreseen between new coal-fired power plants and anticipated RES and gas installations.
- In addition to this supply gap, between coal and RES, the likehood of a power generation shortfall, as early as 2027, must be considered. In such an eventuality the region's electricity balance will be seriously disrupted as it will transform the region from an exporter of electricity to a net importer. This will drive up electricity prices and will affect negatively economic growth. Underinvestment today and higher electricity prices in the near future will act as a brake to economic growth.
- The arduous and rather complex decarbonization process, which SEE countries have to go through, is further burdened on account of their strong coal/lignite legacy, while they also have to deal with serious social and energy security issues.



## Conclusion (II)

- We should also point out that RES development can contribute towards improving the energy security situation of SEE countries. However, the degree to which RES can bolster energy security depends greatly on the type RES used, their connectivity to the national grid, their synchronicity to consumption patterns and their storage capability (For a detailed discussion, please see IENE's Working Paper No. 1917). If RES development is to be pursued on a large scale, then emphasis will have to be placed on dispersed and pumped storage schemes so as to overcome the drawback from the intermittent nature of RES, notably wind and solar.
- Energy efficiency applications can also help lessen a country's dependence on fossil fuels and/or imported fuels. However, considerable work is still required if one is to assess with any precision their potential impact in terms of improving energy security.
- In conclusion, the SE European region needs a well-defined and pragmatic strategy for energy security in tandem with decarbonization policies, which will promote resilience to shocks and disruptions of energy supplies in the short-term, and reduced dependency on particular fuels, energy suppliers and specific routes in the long-term. Consequently, policy makers at national and regional level are faced with huge and complex challenges as they must be prepared to inform the citizens of the available hard choices that reducing this dependency means while making the move to cleaner fuels.



# Thank you for your attention

www.iene.eu

cstambolis@iene.gr