
4th International Seminar on Energy and Shipping, June 8, 2018

OFFSHORE SUSTAINABLE ENERGY INFRASTRUCTURE AND ITS IMPORTANCE IN ENHANCING THE SHIPBUILDING INDUSTRY IN GREECE

Professor Dr.-Eng. Ioannis K. Chatjigeorgiou National Technical University of Athens School of Naval Architecture and Marine Engineering

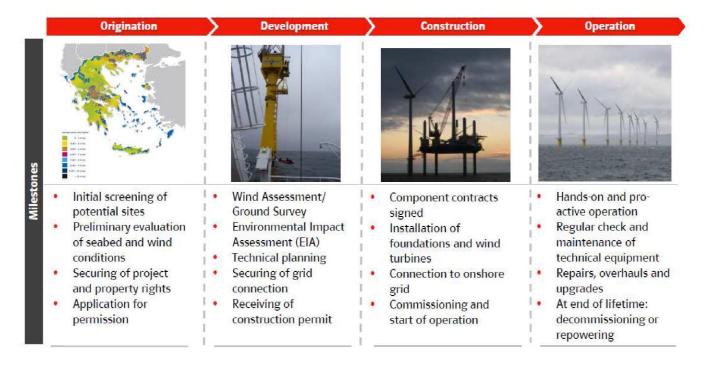
WIND RESOURCE IN EUROPE

Shelter	Sheltered terrain ²		Open plain ⁸		At a sea coast ⁴		Open sea ⁵		Hills and ridges ⁶	
$m s^{-1}$	Wm^{-2}	$m s^{-1}$	Wm^{-2}	$\mathrm{ms^{-1}}$	Wm^{-2}	$m s^{-1}$	Wm^{-2}	${ m ms^{-1}}$	Wm^{-2}	
> 6.0	> 250	> 7.5	> 500	> 8.5	> 700	> 9.0	> 800	> 11.5	> 1800	
5.0-6.0	150-250	6.5-7.5	300-500	7.0-8.5	400-700	8.0-9.0	600-800	10.0-11.5	1200-1800	
4.5-5.0	100-150	5.5-6.5	205-300	6.0-7.0	250-400	7.0-8.0	400-600	8.5-10.0	700-1200	
3.5-4.5	50-100	4.5-5.5	100-200	5.0-6.0	150-250	5.5-7.0	200-400	7.0- 8.5	400- 700	
< 3.5	< 50	< 4.5	< 100	< 5.0	< 150	< 5.5	< 200	< 7.0	< 400	

1	10 m		25 m		50 m		100 m		200 m	
$m s^{-1}$	Wm^{-2}	${ m ms^{-1}}$	Wm^{-2}	${\rm ms^{-1}}$	Wm^{-2}	$m s^{-1}$	Wm^{-2}	ms ⁻¹	Wm^{-2}	
> 8.0	> 600	> 8.5	> 700	> 9.0	> 800	> 10.0	> 1100	> 11.0	>1500	
7.0-8.0	350-600	7.5-8.5	450-700	8.0-9.0	600-800	8.5-10.0	650-1100	9.5-11.0	900-1500	
6.0-7.0	250-300	6.5-7.5	300-450	7.0-8.0	400-600	7.5-8.5	450- 650	8.0-9.5	600- 900	
4.5-6.0	100-250	5.0-6.5	150-300	5.5-7.0	200-400	6.0- 7.5	250- 450	6.5- 8.0	300- 600	
< 4.5	< 100	< 5.0	< 150	< 5.5	< 200	< 6.0	< 250	< 6.5	< 300	

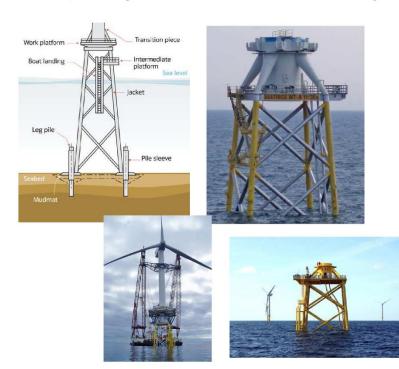
From the European Wind Atlas. Copyright © 1989 by Risø National Laboratory, Denmark

OFFSHORE WIND ENERGY



EUROPEAN OFFSHORE WIND TARGET 2020

NREAP: National Renewable Energy Action Plan


OFFSHORE WIND DEVELOPMENT - MAIN STEPS

JACKET

- Jacket : steel lattice structure (welded pipes Ø 0.5 1.5m) from Oil & Gas industry. ~ 1000tons (> 1km welding!).
- Structure suitable for deep water (< 50-60 m) with heavy turbines (> 5 MW). Small leg monopiles are driven in the seabed (Ø 1 – 2.5m).
- 1st offshore wind installation: demonstration site Beatrice in Scotland in 2006 (2 x REpower 5 MW – 45 m water depth).

Advantages	Disadvantages			
Lightweight and stiff structure	Complexity of fabrication			
Better global load transmission	Large number of joints required			
compared to monopiles	compared to other latticed structures			
Large variations in water depth can	Logistical issues due to the			
be covered through cantilevering	templates (pre-piling case)			
piles or modifying the geometry				
No scour protection required	Complex connection to transition			
	pieces			
Structural redundancy	High manufacturing lead-times			
Low soil dependency	No standardized design that leads to			
	long certification processes			
Good response to wave loads. Little				
sensitivity to large waves and limited	Blade			
dynamic amplifications of loads due	Nacelle			
to high stiffness				
Limited storage area compared to				
GBF	Support tower			
Faster fabrication compared to GBFs				
(serial production)	/			
	Transition piece			
Better quality control	(11)			
	Substructure			
Easy decommissioning				
	Conduct Set DF-20			
	Collexing In-20			

TRIPOD INSTALLATION (ALPHA VENTUS)

Tripods being welded

Tripod up-ended for shipping

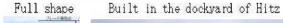
Tripods arriving at Wilhelmshaven port

Heavy-lift crane ship on site

Tripod foundation lowered to seabed

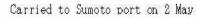
Installation complete

INSTALLATION – HEAVY OFFSHORE VESSELS



JAPANESE PROJECTS : SEA ANGEL (2015) Fukushima 7 MW (MHI) Items Scopes · Verification of 7MW Turbine hydraulic turbine. Development of V-shape Installed semi-sub floating. 149.91m · Development of the Floating summer 2015 reduction of floating motion by turbine control and O&M program. 15.0m 17.0m 7.0m 106.0m FUKUSHIMA-FORWARD · Rotor diameter 164m · Hub height 105m (ASL) Mooring · 8 pieces catenary. Project · Height of the floater 32m

ADVANCED SPAR 5 MW (2016)


- Last part of Fukushima forward project
 - □ 5MW Turbine
 - Hitachi
 - Downwind type
 - Advanced-spar concept
 - Japan Marine United
 - Low draft solution (30m)
 - Large sections (50m)

The floater lost control and leaned on 0 May

The floater recovered stability again on 14 May

JAPANESE PROJECTS : SEMI-SUB AND SPAR (2013)

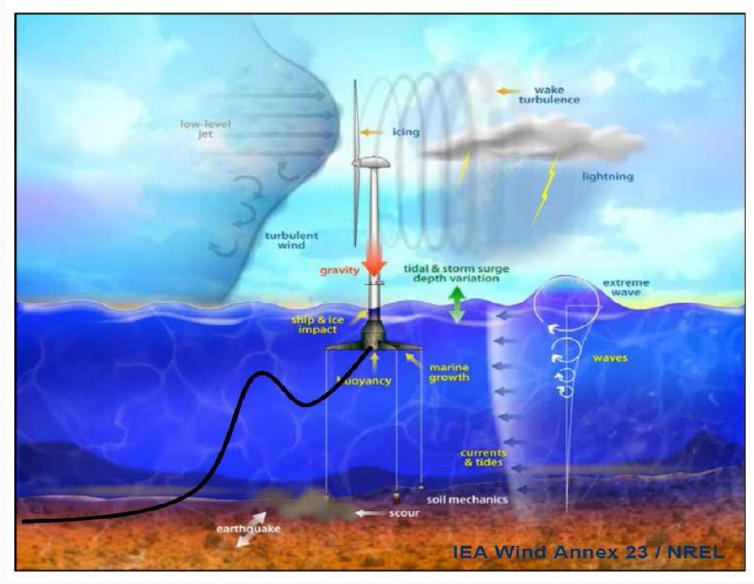
Fukushima (Mitsui/Hitachi)

- Design for use with a 2MW turbine
- Width 58 m
- Total column length 32 m of which 16 mwill be submerged
- Hub height 60 m

GOTO OWT (Toda/Hitachi)

Full Scale:

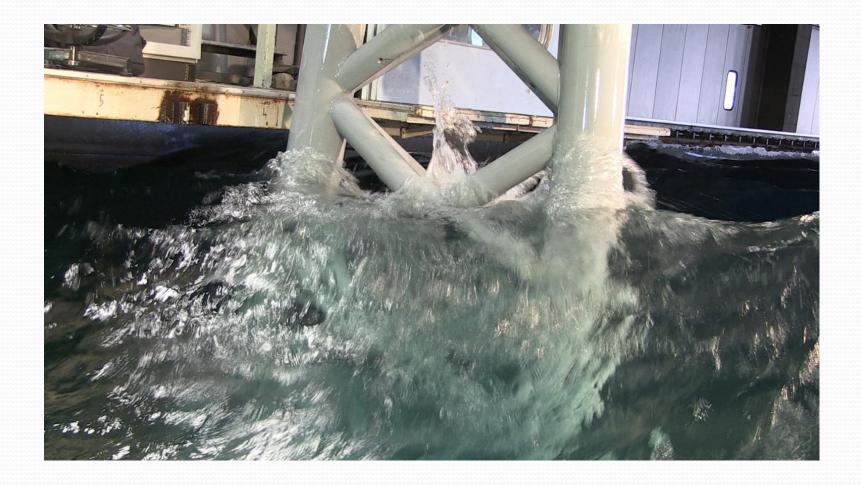
- 2MW downwind turbine with 80m rotor diameter
- Total spar length 172m
- Total weight incl. Turbine 3,400 t
- Steel with pre-stressed concrete
- Steel chain mooring, 3 points, catenary, attached to drag anchors

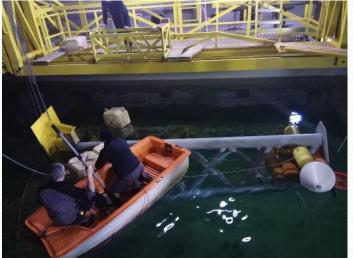

Image Source: Kyoto University

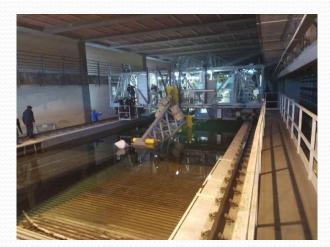
INSTALLATION - SEMISUBMERSIBLE

CHALLENGES TO BE ADDRESSED

WAVE ENERGY CONVERSION CONCEPTS - LOOKING AT THE FUTURE

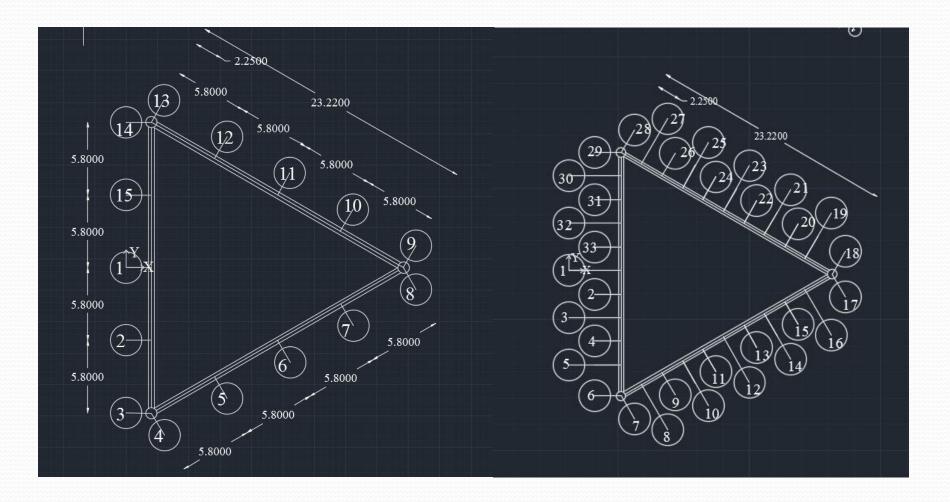


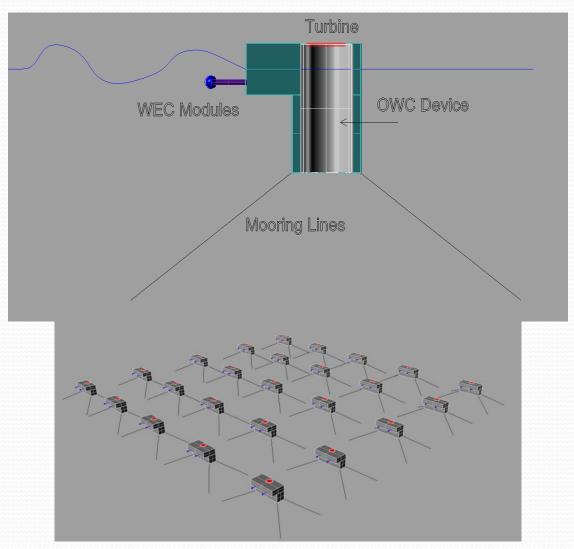

RESEARCH IN GREECE



VIHYDRO & VIHYDRO II


A three-legged jacket foundation for large power OWT is intermediate water depths





EXTENSION TO A HYBRID PLATFORM

A MULTI-TASK HYBRID BREAKWATER

In cooperation with Harbin Engineering University – China

JOIN THE FUTURE IN THE SEA