

HYDROELECTRIC PRODUCTION OF PPC S.A.

• AVAILABILITY • RELIABILITY • FLEXIBILITY

Ioannis Argyrakis

Director Hydroelectric Generation Department

Α

GENERAL INFORMATION FOR HPP's of PPC SA

HPPs location

The Hydroelectric development from 1950 up to date

Hellas is an over 80 % mountainous country with a complicated rugged relief and a variety of climates

Hydroelectric Power Plants are situated in the northwestern part, where most of the mountains are located

1950-1975

8 large Hydroelectric Power Plants, totalling 1.410 MW, were built. Among them the 3 biggest ones : Agras, Ladhon, Louros, Tavropos, Kremasta, Kastraki, Edessaios, Polyphyto

5

1976 up to date

9 large & 5 small Hydroelectric Power Plants, totalling 1.800,2 MW, were built. Among them the two pump storage plants: Pournari I & II, Sfikia, Assomata, Stratos I, Stratos II, Pighai Aoos, <u>Thissavros</u>, **Platanovryssi**, **Ghiona**, Makrochori, Aghia Varvara, **Ilarion HPP, Ilarion SHPP**

6

HYDROELECTRIC POWER PLANTS of PPC S.A. IN OPERATION

MAIN CHARACTERISTICS OF PPC'S HYDROELECTRIC POWER PLANTS

		HYDROELECTRIC POWER PLANT							WATER	INFLOW	RESERVOIR						DAM						
	Name of HPP	number of units	nom. power ofeachunit (MW)	total power station (MW)	start of commercial operation	Height of water fall (m)	water flowing from units operation (m ³ /sec)	* Mean annual production (GWh)	specific consumption (m ³ /kwh)	* River flow (m³/sec)	* Annual inflow (mcm)	min. power pool (m)	max. power pool (m)	Useful capacity (mi. m²)	Energy (G)	volume Wh)	max. level (m)	Volume at max. level (mi. m ³)	Surface area at max. level (km ²)	type	height (m)	length (m)	volume (m³)
ACHELOOS r.	KREMASTA	4	109,3	437,2	i-iii, 1966 iv 1967	132	392	836	3,2			227,0	276,0	2.858	694		282,0	3.222	81	earthfill	165	460	8.200.000
HYDROELECTRIC SCHEME	KASTRAKI	4	80	320,0	1969	75	499	580	5,6	116	3.658	142,0	146,0	98	25	1.471	146,0	98	24	earthfill	96	547	5.200.000
	STRATOS_I	2	75	150,0	1989	37	468	255	11,2			67,0	68,6	12	1		69,0	15	8	earthfill	26	1900	2.800.000
Small HPP	STRATOS_II	2	3,1	6,2	1988	15	43	13	24,8														
Small HPP	GHIONA	1	8,5	8,5	1988	37	23	33	9,5											runoff river			
Small HPP	GLAFKOS	2	1 X 1,8 1 X 2,3	4,1	1926 1997	150	3	10	3,1											runoff river			
	ILARION	2	2 X 76,5	153,0	2014	104	160	320	4,1			366,0	398,5	270	72		398,5	270	17	earthfill	130	540	8.800.000
ALIAKMON r.	POLYPHYTO	3	125	375,0	iii 1974, iii 1975	146	311	417	3,0			270,0	290,0	1.089	342	0.45	291,0	1.300	74	rockfill	112	296	3.459.000
SCHEME	SFIKIA	3	105	315,0	i,iii 1985, ii 1986	60	635	389	7,3		1.448	141,8	146,5	18	3	940	147,0	20	4	earthfill	82	220	1.620.000
	ASSOMATA	2	54	108,0	1985	42	303	129	10,1	46		80,5	85,5	10	1		87,0	14	3	earthfill	52	205	1.450.000
Small HPP	ILARION	1	4,2	4,2	2015		6	9	5,0														
Small HPP	AGHIA VARVARA	1	0,92	0,92	2008	18	8	4	32,0											earthfill	16	2400	1.000.000
Small HPP	MAKROCHORI	3	3,6	10,8	1992	17	84	31	27,9			38,8	42,2						1	earthfill			
HPP	AGRAS	2	25	50,0	1954	156	37	27	2,7	2	73	477,8	480,3						6	earthfill	5	630	40.200
HPP	EDESSAIOS	1	19	19,0	1970	125	19	21	3,6	-		251,6	256,6						0	runoff river			
Small HPP	VERMIO	2	1 X 0,7 1 X 0,64	1,3	1936	96	2	5	4,8											runoff river			
ARACHTHOS r.	PIGHAI AOOS	2	105	210,0	i 1990, ii 1991	675	36	159	0,6		1.577	1315,0	1343,0	144	242		1346,0	170	13	earthfill	78	300	3.200.000
HYDROELECTRIC SCHEME	POURNARI_I	3	100	300,0	1981	79	453	261	5,4	50		100,0	120,0	304	50	329	120,0	304	21	earthfill	88	580	9.000.000
	POURNARI_II	3	2 X 16 1 X 1,6	33,6	i-ii 1998, iii 1999	14	294	41	31,5			33,4	40,0	4	0		46,8	11	1	earthfill	15	2000	700.000
Small HPP	LOUROS	3	2 X 2,5 1 X 5,3	10,3	i-ii 1954, iii 1964	56	22	44	7,7			95,5	96,4					1	0	concrete gravity arch	22	97	12.400
NESTOS r. HYDROELECTRIC	THISSAVROS	3	128	384,0	i,ii 1997 iii 1998	154	288	516	2,7	34	1.082	320,0	380,0	563	180	285	385,8	677	20	rockfill	172	480	12.000.000
SCHEME	PLATANOVRYSSI	2	58	116,0	1999	74	181	196	5,6			223,5	227,5	12	11		228,5	15	3	RCC	95	270	450.000
HPP	LADON	2	35	70,0	1955	239	34	222	1,8	14	450	400,0	420,0	46	25	25	420,2	47	4	concrete butress gravity	56	102	34.000
HPP	N. PLASTIRAS	3	43,3	129,9	i 1960, ii 1961, iii 1962	577	27	182	0,8	5	146	776,0	792,0	300	392	392	794,0	400	25	concrete arch	83	220	100.000
Small HPP	ALMIROS CRETE	1	0,3	0,3	1954	7		1												runoff river			
Hydroelect	ric Power Plants []	41		3.171			4.137	4.551	2,1	267	8.434			5.728		3.447		6.564	306				
[Pumped stora	ge / Pumped capacity]	6		699																			
Sma	all HPP [Runoff River]	16		47			190	150		18	578												
	TOTAL	57		3.217			4.327	4.701															

The actual situation of PPC Hydroelectric Power Plants

- Acheloos r. Hydro Scheme (Kremasta, Kastraki, Stratos-I): 907,2 MW
- Aliakmon r. Hydro Scheme (Ilarion, Polyphyto, Sfikia, Assomata / Agras, Edessaios): 1020,0 MW
- Arachthos r. Hydro Scheme (Pournari-I, Pournari-II / Aoos): 543,6 MW
- Nestos r. Hydro Scheme (Thissavros-Platanovryssi): 500 MW
- N. Plastiras HPP (Tavropos r.): 129,9 мw
- Ladon HPP (Ladon r.): 70 MW
- Small HPP: 46,7 мw

TOTAL: 3.217,4 MW

Small Hydroelectric Power Plants

- SHPP Stratos II on Acheloos river in Western Greece:
- SHPP Giona on Mornos river in Central Greece:
- SHPP Glafkos on Glafkos river in South-Western Greece:
- SHPP Ilarion on Aliakmon river in North-Western Greece:
- SHPP Aghia Varvara on Aliakmon river in North Greece:
- SHPP Makrochori on Aliakmon river in North Greece:
- SHPP Vermio on Tripotamos river in North Greece:
- SHPP Louros on Louros river in Western Greece:
- SHPP Almiros on Almiros river on Crete island:

Capacity 6.2 MW Capacity 8.5 MW Capacity 4.1 MW Capacity 4.2 MW Capacity 0.92 MW Capacity 10.8 MW Capacity 10.8 MW Capacity 10.3 MW

TOTAL: 46.7 MW

Acheloos r. Hydroelectric Scheme in Western Greece [Western Continental territory]

Acheloos Hydroelectric Scheme									
Acheloos river	Dam height (m)	Res. net capacity (mi M3)	Installed Power (MW)						
Kremasta HPP	165	3300	437,2						
Kastraki HPP	96	53	320						
Stratos-I HPP	26	11	150						
Stratos-II small HPP	-	-	6,2						
Total			913,4						
Ghiona small HPP (upstream of a dissipation structure on a branch of the Mornos r. reservoir - Athens water supply conduit)	-	-	8,5						
Glafkos small HPP (Glafkos river)	-	-	3,7						
Total			12,2						
GRAND TOTAL			925,6						

Aliakmon r. Hydroelectric Scheme in Northern Greece

[Western/Central Macedonia territory]

Aliakmon Hydroelectric Scheme									
Aliakmon river	Dam height (m)	Res. net capacity (mi M3)	Installed Power (MW)						
Ilarion HPP	130	270	153						
Ilarion Small HPP			4,2						
Polyphyto HPP	112	1220	375						
Sfikia HPP (pump-storage)	82	18	315						
Assomata HPP	52	10	108						
Aghia Varvara Small HPP			0,9						
Makrochori Small HPP	-	-	10,8						
Total			966,9						
Aliakmon tributaries									
Vermio small HPP (Tripotamos r.)	-	-	1,34						
Agras HPP (Vodas r.)	-	-	50						
Edessaios HPP (Vodas r.)	-	-	19						
Total			70,3						
GRAND TOTAL			1037,3						

Arachthos r. Hydroelectric Scheme in Northwestern Greece [Epirus territory]

Arachthos Hydroelectric Scheme									
Springs of Aoos river	Dam height (m)	Res. net capacity (mi M3)	Installed Power (MW)						
Pighai Aoos HPP	78	144,3	210						
Arachthos river									
Pournari_I HPP	87	303	300						
Pournari_II HPP	15	4	33,6						
Louros river									
Louros small HPP	22	0,37	10,3						
TOTAL			553,9						

Nestos r. Hydroelectric Scheme in Northern Greece

(Eastern Macedonia territory)

Nestos Hydroelectric Scheme									
Nestos river	Dam height (m)	Res. net capacity (mi M3)	Installed Power (MW)						
Thissavros HPP (pump-storage)	172	565	384						
Platanovryssi HPP	95	57	116						
TOTAL			500						

Ladon hydroelectric power plant in Southern Greece [Peloponnese territory]

Ladon Hydroelectric Power Plant (Ladon river)

Location: Central Peloponnese, Arcadia prefecture Purpose: hydropower, water supply Commercial operat.: 1955 Installed power: 70 MW (2x35) Francis type turbines Mean an. Product.: 260 GWH Dam: concrete buttres gravity, 56 m height Reserv. net cap.: 46,2 m.c.m.

N. Plastiras hydroelectric plant in Central Greece [Thessalia territory]

N. Plastiras Hydroelectric Power Plant (Tavropos river)

Location: Thessaly, Karditsa prefecture Purpose: hydropower, irrigation water supply Commercial operat.: 1962 Installed power: 129,9 MW (3x43,3) Francis type turbines Mean an. Product.: 198 GWH Dam: concrete arch, 83 m height Reserv. net cap.: 300 m.c.m.

The multiple role of HPP

- Produce "clear" renewable energy, cover peak load demands and offer ancillary services to the Grid
- Flood control
- Retain water flows and use during draught
- Irrigation & Cities Water supply
- Water supply for cooling PPC's Thermal Plant units and other industry needs
- Fishing, maritime sports, alternative tourism, etc
- Road construction and other substructures in the local region
- In general, hydropower plants upgrade the environment by providing ecological flow into the river beds and constituting water habitats of unique beauty for the local aquatic fauna

Installed Capacity by type of fuel YEAR 2015: 11.216 MW [source: ADMIE]

■Nat. Gas (C.C) ■Nat. Gas (O.C.) ■Fuel Oil □Lignite ■Hydro	
--	--

Energy Production by type of fuel / year 2015: 32.077 GWH

27

WATER NEEDS FOR VARIOUS USES [AVERAGE 2011-2015]

USE	(mi.m3)
Irrigation (250.000 ha are watered in the downstream areas of the HPP)	1.725
Water supply (Thessaloniki, Agrinio, Karditsa, etc.)	133
Cooling PPC's Thermoelectric Plants	66
Ecological flow into the river beds	1.319
TOTAL	3.243

PPC's NEW HYDROELECTRIC PROJECTS

PPC's NEW HYDROELECTRIC PROJECTS

UNDER CONSTRUCTION

- MESSOCHORA HEP
- IKARIA HYBRID POWER PROJECT
- METSOVITIKO HEP

RESENTLY FINISHED

- PAPADIA DAM
- AG. VARVARA REREGULATING PROJECT
- ILARION HEP

B

OPERATION OF HPPs OF PPC SA AND THEIR CONTRIBUTION IN WATER MANAGEMENT

1. GENERAL

- HPPs OF PPC SA manage a great portion of water reserves in Greece ,and as multipurpose schemes provide additional services and water uses for third parties(flood control, irrigation, water supply, recreation etc).
- Mean annual water quantity that PPS SA manages is about 8 billion cu. Meters.
- Net actual storage capacity of PPC's reservoirs is about 5,73 bill.cub meters ,corresponding to 3350 Gwh (max)

2. STRATEGIC TARGET IN HPP's EXPLOITATION

- As a General Target related to the HPPs exploitation strategy, is to optimize the value of water inflows not only from the energy production point of view but also by covering the needs of water to third parties, while keeping in a high degree the safety of the dams, avoiding as much as it is possible water spilling.
- Maximizing the energy potential, we have to keep the reservoir's level higher and operate the hydro units at the best efficiency load.
- Operation in peak loads contributes in maximizing the value of energy produced by a certain quantity of water

3. CONSTRAINS IN HPPs OPERATION (1)

Maximizing the value of Water Inflows and securing water reserves for covering water demand means:

- High level in reservoirs
- Peak operation

Risks to be taken:

- Water spilling
- Decreased flood control capability
- Dam safety

3. CONSTRAINS IN HPPs OPERATION (2)

Meteorological forecasts are stochastic especially methodology for water management is based on: for long period so the

- Statistic data for 20 years
- Technical data of the installations
- Water needs
- Energy demand
- Constrains in the exploitation procedure (limits in water discharges down stream)
- Experience

4. WATER DEMAND (average 2011-2015)

USE	DEMAND in million cubic meters	Corresponding to GWH
WATER SUPPLY	133	90
IRRIGATION	1725	926
ECOLOGICAL FLOW	1319	600
COOLING Thermoelectric Plants	66	35
TOTAL	3243	1651

5. WATER MANAGEMENT

WATER RESERVES DEVELOPMENT TARGET:END OF MAY WATER RESERVES.......2650-3130 Gwh

•	OCTOBER	.1650 – 1850	(average 1750)	Gwh
•	DECEMBER	. 1750 – 2050	(average 1900)	Gwh
•	MARCH	2210– 2625	(average 2420)	Gwh
•	MAY (END)	. 2650 – 3130	(average 2880)	Gwh

Kremasta: Reservoir Level at the end of the month

Pournari: Reservoir Level at the end of the month

Public Power Corporation S.A.

40

AOOS: Reservoir Level at the end of the month

Ilarion: Reservoir Level at the end of the month

Public Power Corporation S.A.

42

Polyphyto: Reservoir Level at the end of the month

Public Power Corporation S.A.

43

Thissavros: Reservoir Level at the end of the month

44 Public Power Corporation S.A.

Plastiras: Reservoir Level at the end of the month

Ladon: Reservoir Level at the end of the month

Public Power Corporation S.A.

STATISTICAL CURVES FOR WATER RESERVES FOR EACH MONTH

ACTUAL CURVES FOR WATER RESERVES FOR EACH MONTH

2002-2016: WATER/ENERGY RESERVES than the Min., Med., Max. goal(GWH)

Year 2015: Hydroelectric Production - Water Inflow into Reservoirs (GWH)

Year 2011-2015: Hydroelectric Production - Water Inflow into Reservoirs

С

CAPACITY AVAILABILITY

1. BASED ON SCHEDULING

The water reserve formed practically at 8 main reservoirs (Kremasta, Ilarion, Polyphyto, Thissavros, Pournari, Ladon, Plastiras, Aoos).

For each main reservoir there is "guide curve" with temporal variation of water level corresponding to the optimal statistics storage compared to the safety of the dam, the water available to third parties, the volume of water that can be diverted to the riverbed, avoiding overflow, etc.

The "water level guide curve" (tries to be followed in each reservoir management) can be expressed as a curve varying water reserve and thus as an energy inventory change curve for each reservoir.

The composition of 8 "guide curves" originates the best guide curve for three storage zones (max., med., min.) for optimal utilization of water reserve. Varying the level of Principal Reservoir, it has a very small impact on the power units supplied by them, while the intermediate reservoirs maintain practically constant level and thus stable power units of HPP which feed.

If by assigning varying the power of the HPP Units as described above are affected by the change in level of the respective reservoirs shows the graph of the change in the total power of HPP corresponding to the desired storage area.

Of the total available power curve we conclude that the minimum available hydro power is ~ 2840 MW at certain period (So available power ≥2840 MW).

AVAILABILITY FOR HYDROELECTRIC POWER PLANTS [MW]															
based on th	ne guide	operatio	on curve	of reserv	voirs										
number of units	4	4	2	2	3	3	2	2	3	2+1	3	2	2	3	
Date / STATION	KREMASTA	KASTRAKI	STRATOS-I	STRATOS-II	POLYPHYTO	SFIKIA	ASSOMATA	AOOS	POURNARI-I	POURNARI-II	THISSAVRO	PLATANOVRISSI	LADON	PLASTIRAS	Total Available Hydroelectric Power
1/1/2015	93	80	75	3,15	120	105	55	115	97	16	122	55	32	38	2842
31/1/2015	99	80	75	3,15	120	105	55	115	97	16	124	55	32	38	2872
28/2/2015	101	80	75	3,15	120	105	55	115	101	16	124	55	32	38	2892
31/3/2015	110	80	75	3,15	120	105	55	115	101	16	125	55	32,5	38	2932
30/4/2015	112	80	75	3,15	120	105	55	115	107	16	128	55	33,5	38	2969
31/5/2015	114	80	75	3,15	120	105	55	115	113	16	128	55	34	38	2996
30/6/2015	113	80	75	3,15	120	105	55	115	115	16	128	55	34,5	38	2999
31/7/2015	110	80	75	3,15	120	105	55	115	111	16	128	55	33,5	38	2973
31/8/2015	106	80	75	3,15	120	105	55	115	107	16	125	55	33	38	2935
30/9/2015	103	80	75	3,15	120	105	55	115	105	16	122	55	32	38	2906
31/10/2015	99	80	75	3,15	120	105	55	115	101	16	118	55	32	38	2866
30/11/2015	97	80	75	3,15	120	105	55	115	101	16	120	55	32	38	2864
31/12/2015	93	80	75	3,15	120	105	55	115	97	16	122	55	32	38	2842

2. ACTUAL RESULTS

2002-2016: WATER/ENERGY RESERVES than the Min., Med., Max. goal (GWH)

Since actual data for the years 2000 ~ 2014 demonstrated that the desired storage area not only maintained but increased risk taking and certain times of year, the storage is maintained at higher levels. (This corresponds to the maximum of the individual curved guides). Declared availabilities per HPP unit also obtained and the total declared availability of HPP.

HYDROPOWER PLANT AVAILABILITY: YEAR 2015											
		Coefficient % Plant shutdowns (hours) Unavailability (%)					b)	Availability (%)			
НРР	installed capacity (MW)	in relation to the total installed capacity	in relation to the river group installed capacity	because maintena nce	due to damage	third	maintenance	damages	third	Plant	Group
KREMASTA	437,2	0,14	0,48	213	28	65	2,43%	0,32%	0,75%	97,25%	
KASTRAKI	320	0,10	0,35	0	1884	11	0,00%	21,51%	0,13%	78,49%	
STRATOS-I	150	0,05	0,17	301	162	72	3,43%	1,85%	0,82%	94,72%	
r. ACHELOOS GROUP	907,2	0,29	1,00				1,74%	8,05%	0,54%		90,22%
POURNARI-I	300,0	0,09	0,55	489	320	558	5,58%	3,65%	6,37%	90,77%	
POURNARI-II units 1,2	32,0	0,01	0,06	121	20	372	1,38%	0,23%	4,25%		
POURNARI-II unit 3	1,6	0,00	0,00	0	39	186	0,00%	0,44%	2,12%		
	33,6	0,01	0,06				1,31%	0,24%	4,15%	98,45%	
AOOS	210,0	0,07	0,39	87	171	15	0,99%	1,95%	0,17%	97,06%	
r. ARACHTHOS GROUP	543,6	0,17	1,00				3,55%	2,78%	3,83%		93,67%
ILARION	153,0	0,05	0,15	313	84	53	3,57%	0,96%	0,61%	95,47%	
POLYPHYTO	375,0	0,12	0,37	502	512	27	5,74%	5,84%	0,31%	88,43%	
SFIKIA	315,0	0,10	0,31	231	71	0	2,63%	0,81%	0,00%	96,55%	
ASSOMATA	108,0	0,03	0,11	0	72	47	0,00%	0,82%	0,53%	99,18%	
AGRAS	50,0	0,02	0,05	129	8	8	1,47%	0,09%	0,09%	98,44%	
EDESSAIOS	19,0	0,01	0,02	0	33	0	0,00%	0,38%	0,00%	99,62%	
r. ALIAKMON GROUP	1020,0	0,32	1,00				3,53%	2,64%	0,27%		93,83%
THISSAVROS	384.0	0.12	0.77	122	373	0	1 39%	4 25%	0.00%	94 35%	
PLATANOVRISSI	116.0	0.04	0.23	339	0	0	3 87%	0.00%	0.00%	96 13%	
r. NESTOS GROUP	500.0	0,04	1.00	555	•		1.97%	3.27%	0.00%	20,1270	94,77%
	200,0	-,20	-,				-,				
LADON	70,0	0,02		200	18	162	2,29%	0,20%	1,85%	97,51%	
PLASTIRAS	129,9	0,04		271	29	0	3,09%	0,33%	0,00%	96,58%	
TOTAL	3170,7	1,00					2,73%	4,16%	0,94%		93,11%

Reported actual data fully confirm the details of our programming (Cap. 1), namely:

1.The total declared availability of HPP (which we never had problems deviations), has never fallen below 2800 MW.

2.The maximum available power is around 2950MW, and almost as much as the installed capacity of large HPPs (Not including small HPPs).

3. The average power available for the period under examination amounts to 2868 MW.

4. The actual available power, declared for the indicated time at 61% of the time than the average volume of 2868MW and only 39% of the time just short ie just 2.3% of the average.

CONCLUSIONS – COMMENTARY

- The above document effortlessly that the available power of HPPs is always more than 2800 MW, and the average annual power available is superior (2868 MW).
- The reliability of HPP on the availability of Hydro Units exceeds 93%.
- The Hydro Units have rapid response in order to take cargo and flexibility to meet the system requirements.
- For all these endeavors impairment capacity availability of HPPs of said technically unsubstantiated and unjust offset the contribution of HPPs in the National Interconnected System.

Thank you!