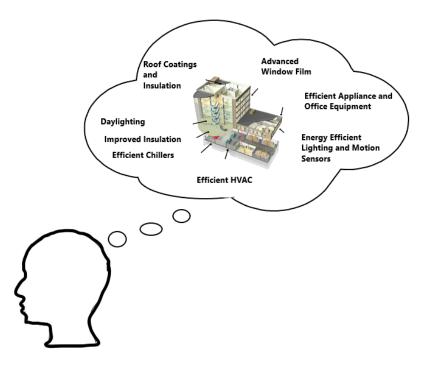
2nd Energy Tech Forum

Increasing the Energy Efficiency of Buildings using Human Cognition; via Fuzzy Cognitive Maps

Vassiliki Mpelogianni, Peter P. Groumpos


Laboratory for Automation and Robotics Department of Electrical and Computer Engineering University of Patras

Presentation Outline

- Problem Statement
- Intelligent Buildings
- Introduction to Fuzzy Cognitive Maps
- Fuzzy Cognitive Map Modeling
 - Case study: *Reduce the consumption of a building by shifting excess loads*
- Results
- Conclusions
- Future Research

Problem Statement

How can we use human cognition procedures to achieve high energy efficiency in buildings?

Intelligent Buildings- Definitions

Services based

Services offered to users:

- communication
- office automation
- building automation

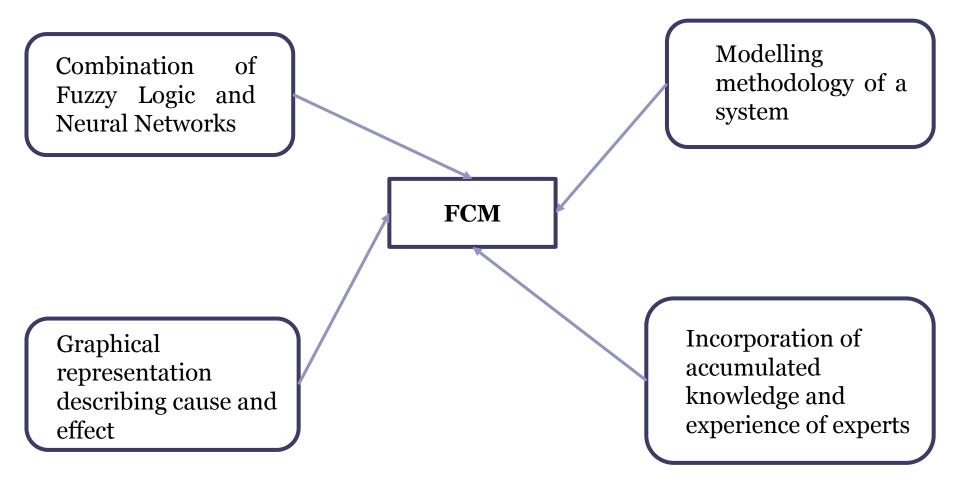
Japanese Intelligent Building Institute (JIBI) System based

IBs

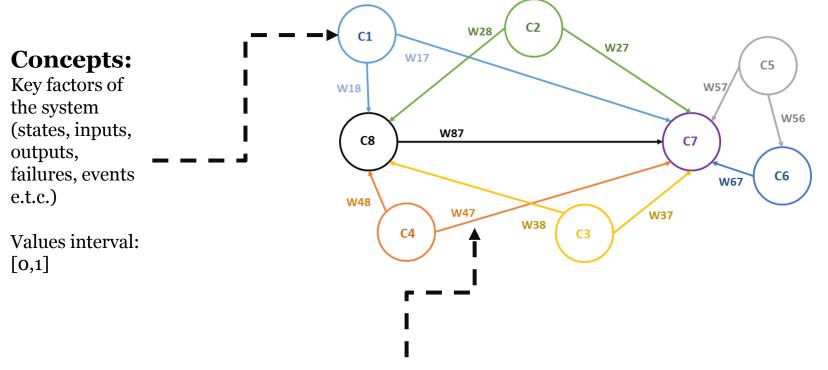
Integrated Technology:

- building automation
- communication automation
- office automation

Chinese IB Design Standard (GB/T50314– 2000) **Performance based** Expected Performance:


- efficient management of resources
- cost reduction
- Meet the users' needs

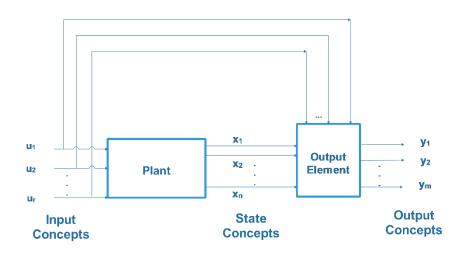
European Intelligent Building Group (EIGB) & Intelligent Building Institute (IBI) ,United States


How to create and energy efficient building

- Solar collectors for air and water heating
- Small scale solar cooling units
- Development and demonstration of standardized building components
- Software for building simulation
- Integration of renewable energy supply

Fuzzy Cognitive Maps - An Introduction (1/2)

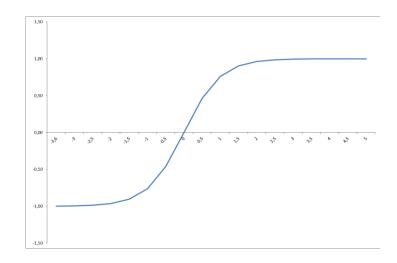
Fuzzy Cognitive Maps - An Introduction (2/2)


Weighted arcs: causal relationships between nodes

Values interval: [-1, 1]

- Value: strength of influence between Ci and Cj
- Sign: direct or inverse relationship
- Direction of arc: whether Ci influences Cj or vice versa

FCM- A system's approach


State Space Approach

$$x_{k+1} = Ax_k + Bu_k$$

$$y_k = Cx_k + Du_k$$

Fitting the Inputs

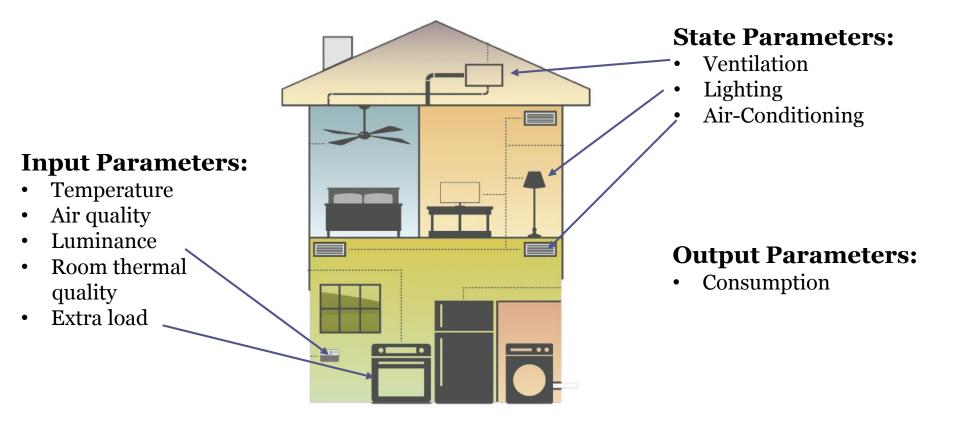
$$f(x) = m + \frac{M - m}{1 + e^{(-r(x - t_0))}}$$

- m= lower limit
- M= upper limit
- r=slope
- to= symmetry to the y axis

FCM- Mathematical Representation

Concepts Calculation at each iteration step

$$x_{k+1} = x_k + \frac{\Delta x_{k+1}}{\sum_{j=1, j \neq i}^n |w_{ji}|}$$


$$y_{k+1} = y_k + \frac{\Delta y_k}{\sum_{j=1, j \neq i}^m |w_{ji}|}$$

where:
$$\Delta x_{k+1} = A \Delta x_k + B \Delta u_k$$

$$\Delta y_k = C \Delta x_k + D \Delta u_\kappa$$

System's description

Objective: Reduce the consumption of a building by shifting excess loads

Fuzzy Cognitive Maps Modeling (1/3)

STATES

- C1: ventilation
- C2: lighting
- C3: air- conditioning

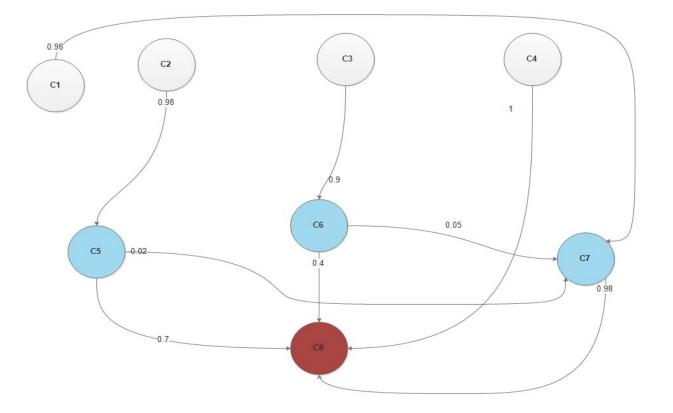
INPUTS

- C4: steptemp
- C5: stepair
- C6: steplum
- C7: roomthq
- C8: extraload

OUTPUTS

• C9: consumption

Fuzzy Cognitive Maps Modeling (2/3)

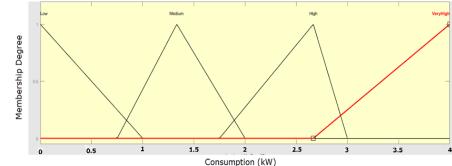

Initial Weight Matrix

	C1	C2	C3	C4	C5	C6	C7	C8	C9
C1	0	0	0.12	0	0	0	0	0	1
C2	0	0	0	0	0	0	0	0	1
C3	0	0	0	0	0	0	0	0	1
C4	0	0	0.98	0	0	0	0	0	0
C5	0.98	0	0	0	0	0	0	0	0
C6	0	0.9	0	0	0	0	0	0	0
C7	0	0	-0.5	0	0	0	0	0	0
C8	0	0	0	0	0	0	0	0	1
C9	0	0	0	0	0	0	0	0	0

Individual Weight Matrices

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0.12 & 0 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 0.98 & 0 & 0 \\ 0 & 0 & 0.98 & 0 \\ 0.98 & 0 & 0 & -0.5 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \qquad D = \begin{bmatrix} 1 \end{bmatrix}$$

Fuzzy Cognitive Maps Modeling (3/3)


Results (1/3)

Inputs	Case	Case	
-	Study 1	Study 2	
Internal	35	30	
Temperature			
Optimal	25	27	
Temperature			
Internal Air Quality	900	1000	
Optimal Air Quality	800	700	
Internal Luminance	100	300	
External Luminance	500	500	
Extra Load	2	4	
Room Thermal	Very	Poor	
Quality	Good		
Extra load Type	Critical	Schedulable	
Hour type	Peak	Peak Time	
	Time		

Results (2/3)

Initial Vector:

Case Study 1:[1 0 1 0.5 0 0 0 0] **Case Study 2:** $[10.66\ 0\ 1\ 0000]$ **Final Values for states and outputs:** 1: $x = [0 \ 1 \ 0.17]$ and y = [0.84]**2**: x=[0.66 0.0 1.79] and y=[1.72] **Interpretation criterion:**

Results (3/3)

	Case Study 1	Case Study 2	
Consumption	Low	Medium	
Extra Load	Critical	Schedulable	
Туре			
Hour Type	Peak Time	Peak Time	
Load Shifting	Run Load	Shift Load	

Conclusions

- Very effective and convenient method when facing complex problems, it is fast and accurate without wasting time in the mathematical modeling of the problem.
- Simplifies the study of energy saving.
- Combines the theoretical knowledge on systems' control with the experience and knowledge of experts

Future Research

- Further improvements of the FCMs via the implementation of learning techniques, in order to adjust the FCM to the specificities of each building
- Application of the FCMs in even more complex systems i.e. buildings in order to reduce their energy consumption

References

- Belogiannis G, Mpelogianni V and Kalamatianou A. "Modeling gender participation in the Greek university education", 16th Conference of the Applied Stochastic Models and Data Analysis International Society and Demographics, Piraeus, Greece, 2015
- Groumpos P.P., "Fuzzy Cognitive Maps: Basic Theories and their Application to Complex Systems". Fuzzy Cognitive Maps Studies in Fuzziness and Soft Computing Vol. 247,pp 1-22,2011
- Mpelogianni V., Groumpos P. "A Revised Approach of Fuzzy Cognitive Maps "In Mediterranean Conference on Automation and Control (MED), 2016 24th International Conference, 2016
- Ogata K., State space analysis of control systems Front Cover. Prentice-Hall, 1967
- Papageorgiou E. and Stylios C., "Fuzzy cognitive maps", Handbook of Granular Computing, John Wiley and Son Ltd, Publication Atrium, Chichester, England, 2008.

Thank you for your attention Questions?

Vassiliki Mpelogianni

v.mpelogianni@ece.upatras.gr